K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

gọi uoc chung cua 3n + 4 va 4n+5 là x

ta co

3n+4chia het cho x suy ra 12n+16 chia het cho x

4n+5 chia het cho x suy ra 12n+15 chia het cho x

suy ra 12n+16-12n+15=1 chia het cho x suy ra x =1

vay 4n+5 và 3n+4 nguyen to cung nhau

23 tháng 12 2018

Gọi ƯCLN (3n+4,4n+5) là d ( d thuộc N*)

suy ra 3n+4 chia hết cho d , 4n+5 chia hết cho d.

Xét 3n+4 chia hết cho d

suy ra 4(3n+4) chia hết cho d

    hay 12n+16 chia hết cho d (1)

4n+5chia hết cho d

suy ra 3(4n+5) chia hết cho d

 hay 12n+15 chia hết cho d (2)

(1),(2) suy ra (12n+16)-(12n+15)chia hết cho d.

                                                   1 chia hết cho d

                                suy ra d=1  

 suy ra ƯCLN(3n+4,4n+5)=1

  Vậy 3n+4,4n+5 là 2 số nguyên tố cùng nhau

12 tháng 11 2019

gọi UCLN(3n+4;n+1) là d

=> 3n+4 ⋮ d

và n+1 ⋮ d

=>3n+4 ⋮ d

3n+3⋮d

=>3n+4-3n-3⋮d

=>1⋮d

=>d=1(n thuộc N)

=> điều phải chứng minh

21 tháng 11 2016

n+1 và 4n+3 là 2 số nguyên tố cùng nhau khi ƯCLN (n+1;4n+3)=1

gọi ƯCLN (n+1;4n+3)=d

=>[(n+1)+(4n+3)] chia hết cho d

=>1 chia hết cho d =>d=1

=>ƯCLN(n+1;4n+3) =1

vậy n+1 và 4n+3 là 2 số nguyên tố cùng nhau

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

5 tháng 1 2022

4n+1 chia hết N

8n+4 chia hết N

<=> 4n+1 chia hết N => 8n+2 chia hết N

8n+2 chia hết N}

                           } 2chia hết cho N

8n+4 chia hết N}

Mà 2 là số nguyên tố nên 4n+1 và 8n+4 là hai số nguyên tố với mọi số tự nhiên N

9 tháng 10 2015

Gọi d là ƯCLN(n+1,3n+2)

=> n+1 chia hết cho d => 3(n+1) chia hết cho d => 3n+3 chia hết cho d

3n+2 chia hết cho d

=> [(3n+3)-(3n+2)] chia hết cho d

1 chia hết cho d

=> d thuộc {-1;1}

mà d lớn nhất => d = 1

=> ƯCLN(n+1,3n+2) = 1

=> n+1 và 3n+2 là 2 số nguyên tố cùng nhau (đpcm)