K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

Ta có:

(n+1)2-n2=2n+1=n+(n+1)

=> A=\(\frac{2+1}{2^21^2}+\frac{2+3}{2^23^2}+... +\frac{2009+2010}{2009^22010^2}=1-\frac{1}{2^2}+\frac{1}{2^2} -\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2} <1 \)

3 tháng 5 2018

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

15 tháng 12 2015

A=3 /1^2.2^2 +5 / 2^2.3^2 +7/3^2.4^2 +...+ 19 /9^2.10^2

=1/1^2-1/2^2+1/2^2-1/3^2+1/3^2-1/4^2+....+1/9^2-1/10^2

=1/1^2-1/10^2

=99/100

=0,99

vậy A< 1

2 tháng 7 2021

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\left(dpcm\right)\) 

10 tháng 10 2022

CS AI XEM S** KO

30 tháng 9 2021

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\)