K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2016

Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60

và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12

=> ĐPCM

tk nha mk trả lời đầu tiên đó!!!

24 tháng 4 2016

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

25 tháng 3 2018

Tham khảo câu hỏi của Nguyễn Bá Thành ở ngay bên dưới 

Chúc học giỏi !!! 

14 tháng 5 2019

Nhận xét : Từ \(\frac{1}{41}\rightarrow\frac{1}{80}\)có 40 phân số . Gọi tổng các phân số đó là A.Ta có thể nhóm các phân số thành hai nhóm rồi so sánh các phân số có tử giống nhau.

Ta có : \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}\)

\(=\left[\frac{1}{41}+\frac{1}{42}+...+\frac{1}{59}+\frac{1}{60}\right]+\left[\frac{1}{61}+\frac{1}{62}+...+\frac{1}{79}+\frac{1}{80}\right]\)

Vì \(\frac{1}{41}>\frac{1}{42}>...>\frac{1}{60}>\frac{1}{61}>...>\frac{1}{80}\) nên \(A>\left[\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{60}\right]+\left[\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{80}\right]\)

\(A>\frac{20}{80}+\frac{20}{80}=\frac{1}{3}+\frac{1}{4}=\frac{4+3}{12}=\frac{7}{12}\)

Vậy : \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)

14 tháng 5 2019

Ta có: 7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60

=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60

và 1/61> 1/62> ... >1/79> 1/80

=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12

=> ĐPCM                      ( ĐPCM có nghĩa là điều phải chứng minh)

~ Học tốt ~ K cho mk nhé! Thank you.

27 tháng 4 2016

tach nho nhong ra vdtach thanh 2 nhom ; tach thanh 3 nhgom ; ....

ta co 1/41+1/42+1/43+...+1/79+1/80=(1/41+1/42+1/43+....1/60)+(1/61+1/62+...+1/80

27 tháng 4 2016

Chào em

Ta có: 
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 

và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80 

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 

=> ĐPCM

24 tháng 3 2021

Ta có:

A=9999931999−5555571997

A=9999931998.999993−5555571996.555557

A=(9999932)999.999993 − (5555572)998.555557

A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)

A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)

A= \(\overline{\left(...0\right)}\)

Vì A có tận cùng là 0 nên \(A⋮5\)

hơi khó

hơi khó

19 tháng 8 2017

bn vào các câu hỏi tương tự là sẽ thấy mấy câu y chang câu của bn thôi

19 tháng 8 2017

Ta có :

 \(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};\frac{1}{43}>\frac{1}{60};....;\frac{1}{60}=\frac{1}{60}\)

\(\Rightarrow\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=20.\frac{1}{60}=\frac{1}{3}\)(1)

\(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};\frac{1}{63}>\frac{1}{80};....;\frac{1}{80}=\frac{1}{80}\)

\(\Rightarrow\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+....+\frac{1}{80}=20.\frac{1}{80}=\frac{1}{4}\)(2)

Từ (1) và (2) \(\Rightarrow y=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+....+\frac{1}{80}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)(đpvm)