Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n là số tự nhiên lẻ thì: n+2 lẻ, n+5 chẵn
=>(n+2)(n+5) chẵn
Với n là số tự nhiên chẵn thì: n+2 chẵn, n+5 lẻ
=>(n+2)(n+5) chẵn
TH1:
voi n la số chan thi n+4 la so chan
va n+7 la so le
ma so chan nhan vs so le la so chan
=>(n+2).(n+5) la so chan
TH2:
Với n la so le thì n+2 la so le
va n+5 la so chan
ma so lenhan vs so chan la so chan
=>(n+2).(n+5) la so chan
Nếu n là số lẻ thì ( n+5 ) là số chẵn . Vậy ( n+ 2 ) * ( n+5 ) là số chẵn
Nếu n là số chẵn thì ( n+ 2) là số chẵn . Vậy ( n+ 2 ) * ( n + 5 ) là số chẵn
Vậy với mọi số tự nhiên n thì tích ( n+2 ) * ( n+5 ) là số chẵn
Duyệt đi , chúc bạn học giỏi
(n+2).(n+5)
2 là số chẵn và 5 là số lè thì n là chẵn hay lẻ thì cũng có 1 vế là chẵn
nếu 1 vế là chẵn thì cả phép tính sẽ có kết là số chẵn
n.(n+3)=n.n+n.3
nếu n là số lẻ thì n.n = số lẻ và n.3 =số lẻ ;số lẻ + số lẻ =số chẵn
nếu n là số chẵn thì n.n =số chẵn và n.3 =số chẵn ;số chẵn + số chẵn = số chẵn
Nếu n+4 là số chẳn => n+7 là số lẻ => chẵn x lẻ = chẵn Nếu n+4 là số lẻ => n+7 là số chẵn => lẻ x chẵn = chẵn => điều cần chứng minh
k để cứa bé mèo
đăt n là số lẻ suy ra n=2k+1 suy ra ﴾n+4﴿﴾n+7﴿=﴾2k+1+4﴿﴾2k+1+7﴿=﴾2k+5﴿﴾2k+8﴿=4k^2+16k+10k+40=4k^2+26k+40=2﴾2k^2+13k+20﴿ vậy suy ra trong trường hợp này ﴾n+4﴿﴾n+7﴿ chia hết cho 2 xét n là số chẵn nên n=2k ta có ﴾n+4﴿﴾n+7﴿=﴾2k+4﴿﴾2k+7﴿=4k^2+14k+8k+28=4k^2+22k+28=2﴾2k^2+11k+14﴿ vậy suy ra trong trường hop85 này ﴾n+4﴿﴾n+7﴿ chia hết cho 2 vậy ﴾n+4﴿﴾n+7﴿ luôn là số chẵn với mọi số tự nhiên n
đặt A=n(n+1)(n+5)
-nếu n chia hết cho 3=>A chia hết cho 3
-nếu có dạng 3k+1(k là STN)
=>n+5=3k+1+5=3(2k+3) chia hết cho 3
=>A chia hết cho 3
-nếu n có dạng 3k+2
=>n+1=3k+3=3(k+1) chia hết cho 3
=>A chia hết cho 3
Do n là số tự nhiên nên n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 (k thuộc N)
+ Với n = 3k thì n chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 1 thì n + 5 = 3k + 6 = 3.(k + 2) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 2 thì n + 1 = 3k + 3 = 3.(k + 1) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
Chứng tỏ tích n.(n + 1).(n + 5) là 1 số chia hết cho 3 với mọi số tự nhiên n
TH1:
nếu n lẻ
=> n + 29 chẵn
=> n + 12 lẻ
mà chẵn nhân lẻ bằng chẵn=>(n+29)(n+12) chẵn
TH2: nếu n là số chẵn
=> n+29 lẻ
=> n+12 chẵn
mà chẵn nhân lẻ bằng chẵn=>(n+29)(n+12) chẵn
nhớ tk mình nha
mình hứa sẽ tk lại thật nhiều
chúc cậu học giỏi
=2n+(29.12) vì 2n là số chẵn 29.12 cũng là số chẵn
=>(n+29).(n+12) là 1 số chẵn
nhớ k mình nha
1a)
U(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
=> n + 1 \(\in\) {-15; -5; -3; -1; 1; 3; 5; 15}
=> n \(\in\) {-16; -6; -4; -2; 0; 2; 4; 14}
(Chú ý nếu chưa học số âm thì bỏ các số âm đi nhé)
1b) 12 / (n+5) là số tự nhiên thì n + 1 \(\in\) Ư(12)
Ư(12) = {1 ; 2; 3; 4; 6; 12}
=> n + 5 \(\in\) {1 ; 2; 3; 4; 6; 12}
=> n \(\in\) { 6 - 5; 12 - 5}
n \(\in\) { 1; 7}
2) (n + 3)(n + 6) xét 2 trường hợp của n
n chẵn => n + 6 chẵn => tích trên là số chẵn và chia hết cho 2
n lẻ => n + 3 chẵn => tích trên cũng là số chẵn và chia hết cho 2
Vậy trong mọi trường hợp tích trên đều là số chẵn và chia hết cho 2
Ta có: 4 là 1 số tự nhiên chẵn
7 là 1 số tự nhiên lẻ
n có thể là 1 số tự nhiên chẵn hoặc lẻ
Nhưng,khi n cộng với 1 số tự nhiên chẵn (4) và n lại cộng với 1 số tự nhiên lẻ (7)thì kết quả chẵn lẻ khác nhau(vì n là 1 số cố định,cộng với số chẵn và số lẻ thì 2 kết quả này luôn trái ngược chẵn lẻ)
=>Nếu n+4 chẵn thì n+7 lẻ(trong trường hợn này n chẵn)
=>nếu n+4 lẻ thì n+7 chẵn(trong trường hợp này n lẻ)
chẵn.lẻ=chẵn(đpcm)
Vì n là một số tự nhiên nên ta có 2 trường hợp:
Trường hợp 1: Nếu n là số chẵn thì n+4 là một số chẵn nên tích (n+4) * (n+7) là số chẵn.
Trường hợp 2: Nếu n là số lẻ thì n+7 là một số chẵn nên tích (n+4) * (n+7) là số chẵn.
Từ 2 trường hợp trên ==> Tích (n+4) * (n+7) luôn là số chẵn.