Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
kết quả là:
Nếu n + 3 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n + 6 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n+3 là số chẵn thì\(\Rightarrow\)(n+3)(n+6) chia hết cho 2
Nếu n+6 là số chẵn thì (n+3)(n+6) chia hết cho 2
tk tôi nha
Nếu n là số lẻ => n+3 là số chẵn => (n+3) (n+6) chia hết cho 2
Nếu n là số chẵn => n+6 là số chẵn => (n+3) (n+6) chia hết cho 2
=> (n+3) (n+6) chia hết cho 2 với mọi STN n
Một lần nữa xin cảm ơn bạn ( le anh tu ) nhiều .
Thank you very very much .
Kết bạn nhé .
vì n+4 là n+5 là hai số liên tiếp nên 1 trong hai số sẽ chia hết cho 2
=>(n+4).(n+5) chia hết cho 2 (đpcm)
Xét các TH:
-TH1:\(n=2k\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)
-TH2:\(n=2k+1\left(k\inℕ\right)\)
\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)
Xét \(\(2\)\) trường hợp
Trường hợp 1:
+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))
Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:
+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))
Theo bài ra ta có:
\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)
\(\(=2.\left(n^2+7n+3\right)⋮2\)\)
\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)
_Minh ngụy_
xét n là số lẻ
=>(n+3) là số chẵn =>(n+3) (n+12) chia hết cho 2
xét n là số chẵn
=.(n+12) là số chẵn =>(n+3) (n+12) chia hết cho 2
rồi bạn