K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
31 tháng 8 2021

a) Đặt \(d=\left(15n+1,30n+1\right)\).

Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).

Ta có đpcm. 

b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).

Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)

Suy ra \(d=1\).

Suy ra đpcm. 

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.

28 tháng 3 2018

Gọi d là ƯCLN của 2n + 1 và 3 n + 2

Ta có

2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )

Từ (1), (2)

=> 6n+4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=>  ƯCLN ( 2n + 1 : 3n + 2 ) = 1

=>  Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z 

28 tháng 3 2018

Phương pháp chứng minh 1 p/s tối giản là :

Chứng minh ƯCLN của tử và mẫu = 1

Còn cách làm : Tự làm

16 tháng 5 2018

a) Gọi d là Ư C L N ( n+1; 2n+3)

ta có: n +1 chia hết cho d => 2.(n+1) chia hết cho d => 2n + 2 chia hết cho d

        2n + 3 chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d 

=> 1 chia hết cho d

\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản

b) Gọi d là Ư C L N ( 2n+1; 3n+2)

ta có: 2n+1 chia hết cho d => 3.(2n+1) chia hết cho d => 6n + 3 chia hết cho d

        3n +2 chia hết cho d => 2.(3n+2) chia hết cho d => 6n + 4 chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

\(\Rightarrow\frac{2n+1}{3n+2}\) là phân số tối giản

c) Gọi d là Ư C L N ( n; n+1)

ta có: n chia hết cho d

         n + 1 chia hết cho d

=> n +1 - n chia hết cho d

=> 1 chia hết cho d

\(\Rightarrow\frac{n}{n+1}\) là phân số tối giản

26 tháng 6 2018

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

6 tháng 4 2015

gọi UCLN(5n+3; 3n+2)=d khi đó 5n+3 chia hết cho d suy ra 15n+9 chia hết cho d (1)

3n+2 chia hết cho d nên 15n + 10 cũng chia hết cho d (2)   ( dử dụng tính chất a chia hết cho m thì a.n cũng chia hết cho m)

từ 1 và 2 suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d ( tính chất chia hết của 1 tổng- hiệu). vậy d=1

vậy UCLN(5n+3; 3n+2)=1 hay phân số trên tối giản

lưu ý: để chứng minh 1 phân số tối giản ta chứng minh UCLN của tử và mẫu bằng 1. còn trong tập Z ta cm UCLN = +-1

22 tháng 3 2021

đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z

suy ra (2n+3)chia hết cho (kí hiệu) d

           (3n+4)chia hết cho d

suy ra 3.(2n + 3)chia hết cho d

           2.(3n +4)chia hết cho d

suy ra 3.2n+3.3chia hết cho d

           2.3n+2.4chia hết cho d

suy ra 6n+9 chia hết cho d

          6n +8 chia hết cho d

suy ra (6n+9)-(6n+8)chia hết cho d

suy ra 1chia hết cho d

 suy ra d =1

vậy 2n+3/3n+4

22 tháng 3 2021

chu mi la , mai mik ik hok ùi ,chu mi la