Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi ƯCLN (2n+3;3n+5)=d
Ta có:
2n+3:d =>3. (2n+3):d
3n+5:d=> 2. (3n+5):d
=> [3. (2n+3) - 2.(3n+5)]:d
=>(6n+9 - 6n-10): d
=> -1:d
=> d={1,-1}
Tick mình nha
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.
Đặt \(n+1;2n+3=d\)
\(n+1⋮d\Rightarrow2n+2\)(1)
\(2n+3⋮d\)(2)
Lấy 2 - 1 ta có :
\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a: Gọi d=ƯCLN(2n+7;n+3)
=>2n+7-2n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số tối giản
b: Gọi d=ƯCLN(5n+7;2n+3)
=>10n+14-10n-15 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
b) Gọi \(d\inƯC\left(3n+2;2n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\2n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+4⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(3n+2;2n+1\right)=1\)
hay \(B=\dfrac{3n+2}{2n+1}\) là phân số tối giản (đpcm)
Gọi ƯCLN(n-1,n-2)=d
n-1⋮d
n-2⋮d
(n-1)-(n-2)⋮d
1⋮d ⇒ƯCLN(n-1,n-2)=1
Vậy n-1/n-2 là ps tối giản
Gọi ƯCLN(n + 1 ; n + 2) = d\(\left(d\inℕ\right)\)
=> \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> n + 1 ; n + 2 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{n+2}\) là phân số tối giản
b) Gọi ƯCLN(2n + 3 ; 3n + 5) = d (d \(\inℕ\))
=> \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> 2n + 3 ; 3n + 5 là 2 số nguyên tố cùng nhau
=> \(\frac{2n+3}{3n+5}\) là phân số tối giản
a) Gọi ƯC( n + 1 ; n + 2 ) = d
=> n + 2 ⋮ d và n + 1⋮ d
=> n + 2 - ( n - 1 ) ⋮ d
=> 1 ⋮ d => d = 1
=> ƯCLN( n + 1 ; n + 2 ) = 1
hay n+1/n+2 tối giản ( đpcm )
b) Gọi ƯC( 2n + 3 ; 3n + 5 ) = d
=> 2n + 3 ⋮ d và 3n + 5 ⋮ d
=> 6n + 9 ⋮ d và 6n + 10 ⋮ d
=> 6n + 10 - ( 6n + 9 ) ⋮ d
=> 1 ⋮ d => d = 1
=> ƯCLN( 2n + 3 ; 3n + 5 ) = 1
hay 2n+3/3n+5 tối giản ( đpcm )