Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
`a) A(x) + M(x) = B(x)`
`->( 2x^2 - 5 + 9x ) + M(x) = ( 3x^2 + 9x - 1 )`
`-> M(x) = ( 3x^2 + 9x - 1 ) - ( 2x^2 - 5 + 9x )`
`-> M(x) = 3x^2 + 9x - 1 - 2x^2 + 5 - 9x`
`-> M(x) = x^2 + 4`
__________________________________
`b)` Cho `M(x) = 0`
`-> x^2 + 4 = 0`
`-> x^2 = -4` (Vô lí vì `x^2 >= 0` mà `-4 < 0`)
Vậy đa thức `M(x)` không có nghiệm
a, ta có A(x) + M(x)= B(x)
=> M(x)= B(x) - A(x)= (3x2+9x-1) -(2x2-5+9x)
= 3x2+9x-1 -2x2 +5 -9x
= (3x2-2x2) +( 9x-9x)+(5-1)
= x2 +4
b, Ta có x2> hoặc bằng 0 => x2+4 >0
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
Cho `P(x) = 0`
`=> x^2 - 6x + 12 = 0`
`=> x^2 - 2x . 3 + 3^2 + 3 = 0`
`=> ( x + 3 )^2 = -3` (Vô lí vì `( x + 3 )^2 >= 0` mà `-3 < 0`)
Vậy đa thức `P(x)` không có nghiệm
Cho P(x)=0P(x)=0
⇒x2−6x+12=0⇒x2-6x+12=0
⇒x2−2x.3+32+3=0⇒x2-2x.3+32+3=0
⇒(x+3)2=−3⇒(x+3)2=-3 (Vô lí vì (x+3)2≥0(x+3)2≥0 mà −3<0-3<0)
Vậy đa thức P(x)P(x) không có nghiệm. Chúc bạn học tốt
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm
\(x^2+4x+7\)
\(=x^2+2x+2x+4+3\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+3\)
\(=\left(x+2\right).\left(x+2\right)+3\)
\(=\left(x+2\right)^2+3\ge3\)
Vậy đa thức vô nghiệm.
\(x^2+4x+7\)
\(=x^2+2x+2x+4+3\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+3\)
\(=\left(x+2\right).\left(x+2\right)+3\)
\(=\left(x+2\right)^2+3\ge3\)