Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H\left(x\right)=2^{x^2}+5^{x^3}+3-1-5^{x^3}=2^{x^2}+2>0\forall x\)
=>H(x) ko có nghiệm
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
a/ f(x) = \(\frac{1}{3}x^4+\frac{3}{2}+1=\frac{1}{3}x^4+\frac{5}{2}\)
Ta có \(\frac{1}{3}x^4\ge0\)với mọi giá trị của x
=> \(\frac{1}{3}x^4+\frac{5}{2}>0\)với mọi giá trị của x
=> f (x) vô nghiệm (đpcm)
b/ \(P\left(x\right)=-x+x^5-x^2+x+1=x^5-x^2+1=x^2\left(x^3-1\right)+1\)
Ta có \(x^2\ge0\)với mọi giá trị của x
=> \(x^2\left(x^3-1\right)\ge0\)với mọi giá trị của x
=> \(x^2\left(x^3-1\right)+1>0\)với mọi giá trị của x
=> P (x) vô nghiệm (đpcm)
Ta có:
Nhận xét : Với mọi số thực y ta có : y4 = (y2)2 ≥ 0 ⇒ y4 + 2 ≥ 2 > 0.
Vậy với mọi số thực y thì Q(y) > 0 nên không có giá trị nào của y để Q(y) = 0 hay đa thức vô nghiệm.
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
\(A\left(x\right)=x^2-4x+7\)
\(A\left(x\right)=0\Leftrightarrow x^2-4x+7=0\Leftrightarrow x^2-2x-2x+4+3=0\)
\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)+3=0\Leftrightarrow\left(x-2\right)^2+3=0\left(1\right)\)
Vì \(\left(x-2\right)^2+3\ge3>0\) với mọi x E R
=>(1) không xảy ra
=>A(x) vô nghiệm (đpcm)
\(p\left(x\right)=x^4+x^3+x+1\)
\(p\left(x\right)=0\Leftrightarrow x^4+x^3+x+1=0\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\int^{x^3+1=0}_{x+1=0}\Leftrightarrow\int^{x^3=-1}_{x=-1}\Leftrightarrow x=-1\)
Vậy............................
F(\(x\)) = 3(\(x\)+1)2 + 2(\(x\)- 1)2 + 1
Ta có:
(\(x-1\))2 ≥ 0 ⇒ 2(\(x-1\))2 ≥ 0
2(\(x-1\))2 + 1 ≥ 1
(\(x+1\))2 ≥ 0 ⇒ 3(\(x+1\))2 ≥ 0 ⇒ 3(\(x+1\))2 + 2(\(x-1\))2+1 ≥ 1
Vậy F(\(x\)) ≥ 1 ∀ \(x\) hay F(\(x\)) =0 vô nghiệm (đpcm)
\(f\left(x\right)=x^2+x+x+2\)
\(f\left(x\right)=x^2+2x+1+1\)
\(f\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow\left(x+1\right)^2+1\ge0\)
\(\Leftrightarrow f\left(x\right)\ge1\)
Vậy f(x) > 0 nên phương trình không có nghiệm
Ta có : \(f\left(x\right)=x^2+x+x+2\)
\(=x^2+x+x+1+1\)
\(=x\left(x+1\right)+\left(x+1\right)+1\)
\(=\left(x+1\right)\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy đa thức f(x) không có nghiệm
_Chúc bạn học tốt_
`@` `\text {Ans}`
`\downarrow`
`P(x) = x^2 + x + 1 =0`
Vì `x^2 \ge 0 AA x`
`=> x^2 + x + 1 \ge 1 AA x`
Mà `1 \ne 0`
`=>` Đa thức `P(x)` vô nghiệm.
Hoặc bạn có thể sử dụng cách này (dễ hình dung hơn)
`P(x) = x^2 + x + 1 =0`
`=> x^2 + 2*1/2x + 1/4 + 3/4 =0`
`=> x(x+1/2) + 1/2(x+1/2) + 3/4=0`
`=> (x+1/2)(x+1/2)+3/4=0`
`=> (x+1/2)^2 + 3/4 = 0`
Mà `(x+1/2)^2 \ge 3/4 > 0 AA x`
`=>` Đa thức P(x) vô nghiệm.
\(P\left(x\right)=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
=> vô nghiệm
Vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1>0\)
Vậy pt vô nghiệm