Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+\frac{20}{5.7.9}+...+\frac{20}{25.27.29}\)
\(=5.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(=5.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(=5.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(=5.\left(\frac{1}{3}-\frac{1}{783}\right)\)
\(=5.\frac{260}{783}\)
\(=\frac{1300}{783}\)
Ta có:\(\frac{1}{\left(n-2\right)n}-\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)-\left(n-2\right)n}{\left(n-2\right)n\cdot n\left(n+2\right)}\)
\(=\frac{n\left(n+2-n+2\right)}{n\cdot\left(n-2\right)n\left(n+2\right)}=\frac{4}{\left(n-2\right)n\left(n+2\right)}\)
Áp dụng\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+...+\frac{20}{25.27.29}\)
\(=5\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(=5\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(=5\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(=5\cdot\frac{261-1}{783}=5\cdot\frac{260}{783}=\frac{1300}{783}\)
\(A=\frac{24}{1.3.5}+\frac{24}{3.5.7}+\frac{24}{5.7.9}+...+\frac{24}{25.27.29}\)
\(A=6\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(A=6\left(\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+\frac{9-5}{5.7.9}+...+\frac{29-25}{25.27.29}\right)\)
\(A=6\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(A=6\left(\frac{1}{1.3}-\frac{1}{27.29}\right)=\frac{520}{261}\)
ta có
\(A=6\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+..+\frac{4}{25.27.29}\right)=6\left(\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+..+\frac{29-25}{25.27.29}\right)\)
\(=6\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+..+\frac{1}{25.27}-\frac{1}{27.29}\right)=6\left(\frac{1}{3}-\frac{1}{27.29}\right)\)
\(=2-\frac{2}{9.29}=\frac{520}{261}\)
Đặt tổng là A
\(\frac{A}{6}=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{6}{25.27.29}\)
\(\frac{A}{6}=\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+\frac{9-5}{5.7.9}+...+\frac{29-25}{25.27.29}\)
\(\frac{A}{6}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\)
\(\frac{A}{6}=\frac{1}{1.3}-\frac{1}{27.29}\Rightarrow A=\left(\frac{1}{3}-\frac{1}{27.29}\right):6\)
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)
Cái B TT nhé
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)
D TT
E mk thấy nó ss ớ
\(=\frac{1}{4}.\left(\frac{17.4}{1.3.5}+\frac{17.4}{3.5.7}+\frac{17.4}{5.7.9}+...+\frac{17.4}{47.49.51}\right)\)
\(=\frac{17}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)
\(=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}.\frac{832}{2499}=\frac{208}{147}\)
\(\left(\frac{\frac{17}{24}.9\frac{1}{2}-3\frac{1}{4}.\frac{17}{24}}{3\frac{1}{2}.2\frac{13}{36}+2\frac{13}{36}.2\frac{3}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\left(9\frac{1}{2}-3\frac{1}{4}\right)}{2\frac{13}{36}.\left(3\frac{1}{2}+2\frac{3}{4}\right)}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\left(\frac{19}{2}-\frac{13}{4}\right)}{\frac{85}{36}.\left(\frac{7}{2}+\frac{11}{4}\right)}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\frac{19.2-13}{4}}{\frac{85}{36}.\frac{7.2+11}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{\frac{17}{24}.\frac{25}{4}}{\frac{85}{36}.\frac{25}{4}}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{17}{24}:\frac{85}{36}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{17}{24}.\frac{36}{85}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{3}{10}-\frac{1}{2}\right)^{-2}\)
\(=\left(\frac{3-5}{10}\right)^{-2}\)
\(=\left(\frac{-1}{5}\right)^{-2}\)
\(=\frac{1}{\left(-\frac{1}{5}\right)^2}=\frac{1}{\frac{\left(-1\right)^2}{5^2}}=\frac{1}{\frac{1}{25}}=25\)
Ta có:
\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)
\(\Rightarrow A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)
\(\Rightarrow A=9.\frac{1}{3}-9.\frac{1}{783}\)
\(\Rightarrow A=3-\frac{1}{87}\)
Vì \(3-\frac{1}{87}< 3.\)
\(\Rightarrow A< 3\left(đpcm\right).\)
Chúc bạn học tốt!