K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2015

a. \(8^{10}-8^9-8^8=8^8.\left(8^2-8-1\right)=8^8.55\text{ chia hết cho 55}\Rightarrow\text{đpcm.}\)

b. 817-279-913

= (34)7-(33)9-(32)13

= 328-327-326

= 326.(32-3-1)

= 326.5

= (32)13.5

= 913.5

= 912.9.5

= 912.45 chia hết cho 45 => đpcm.

19 tháng 2 2022

a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)

b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)

a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)

b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)

23 tháng 10 2017

a, Ta có  16 5 + 2 15 = 2 4 5 + 2 15 = 2 20 + 2 15 =  2 15 2 5 + 1 = 2 15 . 33  chia hết cho 33

b, Ta có:  8 8 + 4 10 = 2 3 8 + 2 2 10 = 2 24 + 2 20 =  2 20 2 4 + 1 = 2 20 . 17  chia hết cho 17

20 tháng 10 2018

15 tháng 7 2017

\(A=\left(n+10\right)\left(n+15\right)\)

\(A=n^2+15n+10n+150\)

\(A=n^2+25n+150\)

Xét: 150 là 1 số chẵn.

Xét: Nếu n chẵn:

\(n^2;25n\) luôn chẵn

\(\Rightarrow n^2+25n+150\)= chẵn+chẵn+chẵn=chẵn \(⋮2\)

Xét: Nếu n lẻ:

\(\Rightarrow n^2;25n\) luôn lẻ

\(\Rightarrow n^2+25+150\)= lẻ+lẻ+chẵn=chẵn \(⋮2\)

\(\rightarrow A⋮2\rightarrowđpcm\)

\(B=81^7-27^9-9^{13}\)

\(B=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(B=3^{28}-3^{27}-3^{26}\)

\(B=3^2.3^{26}-3.3^{26}-3^{26}\)

\(B=3^{26}\left(3^2-3-1\right)\)

\(B=3^{26}.5⋮5\)

\(B=\left(3^2\right)^{13}.5\)

\(B=9^{13}.5⋮9\)

\(B⋮5;9\Rightarrow B⋮45\rightarrowđpcm\)

Vì tổng các số của 102016 và 89 ⋮ 9

28 tháng 12 2021

thấy sai sai 89 ko chia hết cho 9

23 tháng 11 2017

Đặt A là tổng của 2^1 + 2^2 + 2^3 +.....+ 2^88 +2^89 + 2^90

= (2^1 + 2^2 + 2^3) + ....+ (2^88 + 2^89 +2^90)

= (2^1.1+2^1.2+2^1.2^2) +....+(2^88.1+2^88.2+2^88.2^2)

= 2^1.(1+2+2^2) +.....+2^88.(1+2+2^2)

= 2^1.7 +....+2^88.7

= 7.(2^1+....+2^88)

=> A chia hết cho 7