K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

vế trái được viết dưới dạng :

 \(\frac{3}{5}.\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+....+\frac{1}{100!}\right)< \frac{3}{5}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

\(=\frac{3}{5}\left(1-\frac{1}{100}\right)< \frac{3}{5}=0,6\)

12 tháng 3 2023

\(\dfrac{-2}{5}\cdot\dfrac{4}{7}+\dfrac{-3}{5}\cdot\dfrac{2}{7}+\dfrac{-3}{5}\\ =\dfrac{-2}{5}\left(\dfrac{4}{7}+\dfrac{3}{7}\right)+\dfrac{-3}{5}\\ =-\dfrac{2}{5}+\dfrac{-3}{5}=-1\)

24 tháng 6 2016

C=1+3+32+...+311

3C = 3+3+ 33 +...+311 + 312

=> 3C - C = ( 3+3+ 33 +...+311 + 312 )- (1+3+3+ 33 +...+311) (SỬ DỤNG QUY TẮC DẤU NGOẶC )

    3C-C=3+32+33+...+312-1-3-32-33-...-311  (SỬ DỤNG TÍNH CHẤT GIAO HOÁN CỦA PHÉP CỘNG )

   3C-C=(3-3)+(32-32)+(33-33)+...+(311-311)+312-1

   2C= 312 - 1

=> C = (312 - 1)/2 = 265720=6643.40 ( CHIA HẾT CHO 40 VÌ TÍCH CÓ THỪA SỐ 40)

17 tháng 3 2018

Đề còn thiếu 1 điều kiện nữa là \(n>0\)

Đặt \(A=\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}\) ta có : 

\(A=\frac{4}{5}\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\right)\)

Để \(A< 0,8\) thì \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1\)

Đặt \(B=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\) ta có : 

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}+\frac{1}{n}\)

\(B< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(B< 1\) ( đpcm ) 

Suy ra : \(A=\frac{4}{5}.B=0,8.B< 0,8\) ( vì \(B< 1\) ) 

Vậy \(\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}< 0,8\)

Chúc bạn học tốt ~