K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5

b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60

c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7

29 tháng 10 2021

Tôi  tên  là  Ngọc  Anh  . Năm  nay  Tôi 11 tuổi.  Tôi  không  biết  bài  này  

28 tháng 10 2022

câu a của bạn thiếu 2 mũ 2

 

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

18 tháng 12 2021

gải giúp mình với

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

19 tháng 7 2021

\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\) 

\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\) 

\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\) 

\(S=7.\left(2+2^4+...+2^{28}\right)\) 

⇒ \(S⋮7\)   ( điều phải chứng minh ) 

19 tháng 7 2021

S=21+22+23+...+230

S=(21+22+23)+(24+25+26)+...+(228+229+230)

S=7.2+7.24+...+7.228

S=7.(2+24+...+228)

⇒S⋮7

7 tháng 2 2020

Đặt : \(A=5+5^2+5^3+...+5^{30}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)

\(=\left(1+5\right)\left(5+5^3+...+5^{29}\right)\)

\(=6\left(5+5^3+...+5^{29}\right)⋮6\) (đpcm)

7 tháng 2 2020

                                                   Bài giải

\(5+5^2+5^3+5^4+...+5^{29}+5^{30}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)

\(=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)

\(=6\left(5+5^3+...+5^{29}\right)\text{ }⋮\text{ }6\)

\(\Rightarrow\text{ ĐPCM}\)

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

2 tháng 12 2019

Tổng trên có số các số hạng là (99-1)+1=99 số hạng

Nhóm 3 số hạng liên tiếp vào 1 nhóm

(2+22+23)+(24+25+26)+...+(297+298+299)=2(1+2+22)+24(1+2+22)+...+297(1+2+22)=7(2+24+...+297) chia hết cho 7