Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)
A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)
A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2
A>4
1 + 1/2 + 1/3 + ... + 1/62 + 1/63 + 1/64
= 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + ... + 1/16) + (1/17 + 1/18 + ... + 1/32) + (1/33 + 1/34 + ... + 1/64)
> 1 + 1/2 + 1/4 × 2 + 1/8 × 4 + 1/16 × 8 + 1/32 × 16 + 1/64 × 32
> 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2
> 1 + 1/2 × 6
> 1 + 3
> 4
1 + 1/2 + 1/3 + ... + 1/62 + 1/63 + 1/64
= 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + ... + 1/16) + (1/17 + 1/18 + ... + 1/32) + (1/33 + 1/34 + ... + 1/64)
> 1 + 1/2 + 1/4 × 2 + 1/8 × 4 + 1/16 × 8 + 1/32 × 16 + 1/64 × 32
> 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2
> 1 + 1/2 × 6
> 1 + 3
> 4
Xét \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{123}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{122}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-2\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{61}\right)\)
\(=\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+...+\frac{1}{123}\)
\(M=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{62}+\frac{1}{63}\)
\(M=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)\)
\(M< 1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32\)
\(M< 1+1+1+1+1+1\)
\(M< 1.6=6\left(đpcm\right)\)
đpcm là điều phải chứng minh đúng không bn soyeon_Tiểubàng giải?