K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2023

Chứng tỏ bé hơn 1/50 nhé

1 tháng 4 2023

help me: tìm n biết 2^n + 3^n = 5^n với n E N

23 tháng 11 2016

A = 7+7+ 73 +....+ 7100

    = (7+72) + (7+ 74)+.....+(799+7100)

     = 7(1+7) + 73(1+7)+.......+799(1+7)

    = 8(7+72+73+.....+ 799) chia hết cho 8  

30 tháng 11 2016

A = 7 + 72 + 73 + ... + 799 + 7100

A = ( 7 + 72 ) + ( 73 + 74 ) + ... + ( 799 + 7100 )

A = ( 1 + 7 ) . 7 + ( 1 + 7 ) . 73 + ... + ( 1 + 7 ) . 799

A = 8 . 7 + 8 . 73 + ... + 8 . 799

A = 8 . ( 7 + 73 + ... + 799 )

=> A chia hết cho 8 (đpcm)

29 tháng 12 2017

1. 5x+27 là bội của x+1 

=> 5x+27 chia hết cho x+1 

=> 5(x+1)+22 chia hết cho x+1 

Mà 5(x+1) chia hết cho x+1

=> 22 chia hết cho x+1 

=> x+1 thuộc Ư(22) 

Tiếp theo bạn tự làm nhé

9 tháng 10 2017

C=1/7+1/7^2+1/7^3.....1/7^100

7C=1+1/7^2+.....+1/7^99

6C=7C-C=1-1/7^100

=>C=1/7^100/6

9 tháng 10 2017

https://olm.vn/hoi-dap/question/219353.html

E sao chép link này nha

19 tháng 6 2018

Đặt A = 1 + 7 + 72 + ... + 798

 => A = 70 + 7+ 72 + ... + 798

 => A = ( 70 + 71 + 72 ) + ( 73 + 74 + 75 ) + ... + ( 796 + 797 + 798 )

 => A = 70 . ( 70 + 71 + 7) + 7 . ( 70 + 71 + 7) + ... + 796  . ( 70 + 71 + 7)

 => A = 70 . 57 + 73 . 57 + ... + 796 . 57

 => A = 57 . ( 70 + 73 + ... + 796 ) \(⋮\)57

19 tháng 6 2018

Đặt S = \(1+7+7^2+..........+7^{98}\)

\(\Rightarrow S=7^0+7^1+7^2+.............+7^{98}\)

\(\Rightarrow S=\left(7^0+7^1+7^2\right)+\left(7^3+7^4+7^5\right)+..........+\left(7^{96}+7^{97}+7^{98}\right)\)

\(\Rightarrow S=7^0.\left(7^0+7^1+7^2\right)+7^3.\left(7^0+7^1+7^2\right)+............+7^{96}.\left(7^0+7^1+7^2\right)\)

\(\Rightarrow S=7^0.57+7^3.57+..........+7^{98}.57\)

\(\Rightarrow S=57.\left(7^0+7^3+.........+7^{98}\right)\)

Mà 57 \(⋮\)57 \(\Rightarrow57.\left(7^0+7^3+..........+7^{98}\right)⋮57\)

Vậy tổng S chia hết cho 57

i don't now

mong thông cảm !

...........................

25 tháng 7 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(\Rightarrow A< \frac{99}{100}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

nhiều qá lm sao nổi

23 tháng 4 2019

-4/11+5/6+7/11-5/6

=(-4/11+7/11)+(5/6-5/6)

=3/11+0

=3/11

23 tháng 4 2019

Làm là giúp đủ 3 câu hộ mình. 1 câu k k đâu !