Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Rút gọn P = 3 Þ giá trị của biểu thức P không phụ thuộc vào giá trị của m.
b) Rút gọn Q = 9 Þ giá trị của biểu thức Q không phụ thuộc vào giá trị của m.
a)P=x(2x+1)-x2(x+2)+x3-x+3
P=2x2+x-x3-2x2+x3-x+3
P=(2x2-2x2)+(x-x)+(-x3+x3)+3
P= 0 + 0 + 0 +3
P=3
Vậy giá trị của của biểu thức đã cho không phụ thuộc vào giá trị của biến x
a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy=-1\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)
\(A=\left(3x-2\right)\left(2x+3\right)+x\left(x-6\right)-x^2-5x+2020\)
\(=6x^2+9x-4x-6+x^2-6x-x^2-5x+2020\)
\(=6x^2-6x+2014\)
\(A=\left(x^2-2\right)\left(x^2+x+1\right)-x\left(x^3+x^2-3x-2\right)=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x=2\left(đpcm\right)\)
1: \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)
\(=4x^2-25-4x^2+12x-9-12x\)
=-34
\(x.\left(2x+1\right)-x^2.\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
\(=\left(-x^3+x^3\right)+\left(2x^2-2x^2\right)+\left(x-x\right)+3\)
\(=3\)
Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
x(2x+1)-x2 (x+2)+(x3-x+3)
=2x2+x-x3-2x2+x3-x+3
=(2x2-2x2)+(x-x)-(x3-x3)+3
=0+0-0+3=3
Vậy biểu thức sau không phụ thuộc vào biến