K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2015

1/41 + 1/42 +....+1/80

Chia tổng trên thành 2 nhóm mỗi nhóm 20 số hạng. Ta được:

1/41 + 1/42+ .....+ 1/60 > 1/60.20 (mỗi số hạng trong tổng đều >1/60 và 1/60 = 1/60)

1/61 + 1/62 +......+ 1/80 > 1/80.20 (mỗi số hạng trong tổng đều > 1/80 và 1/80 = 1/80)

=> 1/41 + 1/42 +.....+1/61 > 1/3

     1/61 + 1/62 +....+1/80 > 1/4

=> 1/41 +1/42 +...+1/80 < 1/3 + 1/4

=> 1/41 + 1/42 +....+ 1/80 < 7/12 (đpcm)

15 tháng 3 2017

dcpm la gi vay ban

31 tháng 8 2015

Đặt 1/41 + 1/42 + .... + 1/60 ( có 20 phân số )

      1/61 + 1/62 + .... + 1/80 ( có 20 phân số )

Ta có : 1/41 + 1/42 + .... + 1/60 > 1/60 + 1/60 + .... + 1/60 = 1/60 x 20 = 1/3

           1/61 + 1/62 + .... + 1/80 > 1/80 + 1/80 + .... + 1/80 = 1/80 x 20 = 1/4 

=> 1/41 + 1/42 + .... + 1/80 > 1/3 + 1/4 = 7/2

=> đpcm

31 tháng 8 2015

vào ccâu hỏi tương tự có dạng jống thế đêý bn

tick cko mik đúng nhé

27 tháng 4 2016

Chứng minh 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12 

Ta có: 
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 

và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80 

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 

=> ĐPCM

25 tháng 3 2018

Tham khảo câu hỏi của Nguyễn Bá Thành ở ngay bên dưới 

Chúc học giỏi !!! 

24 tháng 4 2017

Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+\dfrac{1}{44}+...+\dfrac{1}{80}\)

\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}\right)\)

Nhận xét:

\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}\) \(=\dfrac{1}{3}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}>\dfrac{1}{80}+\dfrac{1}{80}+...+\dfrac{1}{80}\) \(=\dfrac{1}{4}\)

\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}>\dfrac{1}{12}\)

Vậy \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{12}\) (Đpcm)

6 tháng 1 2016

Ta có: 
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 

và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80 

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 

=> ĐPCM

6 tháng 1 2016

Chứng minh 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12

Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60

và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12

=> ĐPCM