K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

Ta có :\(\frac{a}{b}=\frac{b}{c}\)

=> \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{a}{b}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\left(\text{đpcm}\right)\)

27 tháng 12 2020

Cho xem đáp án nhé

9 tháng 2 2020

\(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)

\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)

14 tháng 10 2016

Từ a/b = b/c 

Suy ra : bb = ac 

b= ac 

vậy : a2 + b2 / b2+ c2 = a2 + ac / ac + c= a(a+c) / c(a+c) = a/c 

Vậy : Ta có được cái cần chứng minh :)) 
Lớp mình vừa kiểm tra 15' bài này xong . 

15 tháng 10 2016

cảm ơn bạn

10 tháng 10 2020

tham khảo trên vietjack.com í

5 tháng 11 2018

đề bài thiếu rồi bạn

bổ sung thêm vào 

rồi mk trả lời 

...............

5 tháng 11 2018

\(\frac{a}{b}=\frac{c}{a}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{a^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{c^2}{a^2}=\frac{a^2+c^2}{c^2+a^2}\left(1\right)\)

\(\frac{a^2}{b^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{a}=\frac{c}{b}\left(2\right)\)

từ \(\left(1\right),\left(2\right)\Rightarrow\frac{c}{b}=\frac{a^2+c^2}{a^2+b^2}\left(đpcm\right)\)

p/s: bn vt thiếu đề nên mk ko rõ đúng nhưu đề b ko thường dạng này làm thế =]

21 tháng 12 2019

Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)

\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)

\(\Rightarrow2ab=c.\left(a+b\right)\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

19 tháng 12 2016

Bài 1:
Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\) (1)

\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+c^2}\)