K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2014

nếu n lẻ => n+2013 chia hết 2
nếu n chẵn => n+2012 chia hết 2 => (n+2012).(n+2013) chia hết 2

14 tháng 3 2022

vì n+2012 và n+2013 là 2 số tự nhiên liên tiếp

mà 2 số tự nhiên liên tiếp nhân với nhau có tận cùng là chữ số chắn

=> chia hết cho 2

10 tháng 12 2015

2011n luôn lẻ

2012n luôn chẵn

2013n luôn lẻ

=> 2011n + 2012n + 2013n luôn chẵn

=> Chia hết cho 2

=> ĐPCM 

3 tháng 12 2014

2011có chữ số tận cùng là 1 => 2011n là số lẻ

2013n có tận cùng là 9 ; 7 ; 1 ;3 => 2013n là số lẻ

2012có tận cùng chẵn            => 2012n là số chẵn

do đó tổng 3 số đã cho sẽ là : lẻ + lẻ + chẵn = chẵn ( luân chia hết cho 2 với mọi n thuộc N*) => ĐPCM

22 tháng 12 2017

ĐPCM là gì vậy nhỉ?

19 tháng 11 2016

Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)

\(A=2n+\left(...6\right)+\left(...1\right)\)

Ta có : 2n là số chẵn

\(2012^{2013}\) là số chẵn

\(2013^{2012}\) là số lẻ

\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ

Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ

=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )

15 tháng 12 2018

đặt: S=2011n+2012n+2013n

Ta có:

\(\hept{\begin{cases}2011^nlẻ\\2012^nchẵn\\2013^nlẻ\end{cases}}\Rightarrow2011^n+2012^n+2013^nchẵn\Rightarrow S⋮2\left(đpcm\right)\)

6 tháng 2 2020

TH1: n = 2k (k thuộc N):

Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).

Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2    (1)

TH2: n = 2k + 1 (k thuộc N):

Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k  + 1 + 20132012).

Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2    (2)

Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.

25 tháng 7 2018

I don,s in the math and the art