Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì n+2012 và n+2013 là 2 số tự nhiên liên tiếp
mà 2 số tự nhiên liên tiếp nhân với nhau có tận cùng là chữ số chắn
=> chia hết cho 2
2011n luôn lẻ
2012n luôn chẵn
2013n luôn lẻ
=> 2011n + 2012n + 2013n luôn chẵn
=> Chia hết cho 2
=> ĐPCM
2011n có chữ số tận cùng là 1 => 2011n là số lẻ
2013n có tận cùng là 9 ; 7 ; 1 ;3 => 2013n là số lẻ
2012n có tận cùng chẵn => 2012n là số chẵn
do đó tổng 3 số đã cho sẽ là : lẻ + lẻ + chẵn = chẵn ( luân chia hết cho 2 với mọi n thuộc N*) => ĐPCM
Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)
\(A=2n+\left(...6\right)+\left(...1\right)\)
Ta có : 2n là số chẵn
\(2012^{2013}\) là số chẵn
\(2013^{2012}\) là số lẻ
\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ
Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ
=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )
TH1: n = 2k (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).
Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (1)
TH2: n = 2k + 1 (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k + 1 + 20132012).
Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (2)
Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.
nếu n lẻ => n+2013 chia hết 2
nếu n chẵn => n+2012 chia hết 2 => (n+2012).(n+2013) chia hết 2