Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(2^n\equiv0\left(mod4\right)\)với \(\left(n\in N;n>1\right)\)
Đặt \(2^n=4k\left(k\in Z^+;k\ge1\right)\)
\(\Rightarrow2^{2^n}-1=2^{4k}-1=\left(2^k\right)^4-1\)
Theo định lý fermat nhỏ ta có :
\(\left(2^k\right)^4=\left(2^k\right)^{5-1}\equiv1\left(mod5\right)\)
\(\Rightarrow\left(2^k\right)^4-1\equiv0\left(mod5\right)\)
\(\Rightarrow Q.E.D\)
Nguyễn Ngọc Quý sai ...= 7^6. ( 7-1+49)= 7^6.55 chia hết cho 11
a. 87 - 218 = 221 - 218 = 217 ( 24 - 2) = 217 ( 16-2) = 217 * 14 chia het cho 14
b. 55 - 54 + 53 = 53 ( 52 - 5 + 1) = 53 * 21 chia het cho 7
con nhung bai lai ban tu giai nhe , con neu thac mac hoi ban