Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\\ =x^4-x^3y+x^3y-x^2y^2+x^2y^2-y^4\\ =\left(x^4-y^4\right)+\left(-x^3y+x^3y\right)+\left(-x^2y^2+x^2y^2\right)\\ =x^4-y^4=VP\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
vì nếu nó không bằng nhau thì đâu cần phải cm nên :
=> nó bằng nhau
Ta có:
\(VT=2\left(x^2+xy+y^2\right)^2\)
\(=2\left[\left(x^2\right)^2+\left(xy\right)^2+\left(y^2\right)^2+2x^3y+2xy^3+2x^2y^2\right]\)
\(=2\left[x^4+x^2y^2+y^4+2x^3y+2xy^3+2x^2y^2\right]\)
\(=2x^4+2x^2y^2+2y^4+4x^3y+4xy^3+4x^2y^2\)
\(=x^4+y^4+\left(x^4+4x^3y+6x^2y^2+4xy^3+y^2\right)\)
\(=x^4+y^4+\left(x+y\right)^4=VP\)
Vậy \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\) (đpcm)
Chúc bạn học tốt!!!
Thằng hiếu đã đánh tan vế trái thì anh đây đánh tan vế trái
\(VT=x^4+y^4+\left(x+y\right)^4\)
\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2+\left(x+y\right)^4\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2+\left(x+y\right)^4\)
\(=\left(x+y\right)^4-4xy\left(x+y\right)^2+\left(2xy\right)^2-2\left(xy\right)^2+\left(x+y\right)^4\)
\(=2\left[\left(x+y\right)^4-4xy\left(x+y\right)^2+x^2y^2\right]\)
\(=2\left[\left(x+y\right)^2-xy\right]^2\)
\(=2\left(x^2+xy+y^2\right)^2=VP\)
\(\left(x+y\right)^4+x^4+y^4\)
\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+4x^2y^2+y^4+4x^3y+2x^2y^2+4y^3x+x^4+y^4\)
\(=2x^4+2y^4+6x^2y^2+4x^3y+4y^3x\)
\(=2\left(x^4+y^4+3x^2y^2+2x^3y+2y^3x\right)\)
\(=2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2y^3x\right)\)
\(=2\left(x^2+xy+y^2\right)^2\left(đpcm\right)\)
Lời giải:
Ta có:
$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$
$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$
$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$
$=2(x^2+y^2+xy)^2$
Ta có đpcm.
x4+y4+(x+y)4=x4+y4+x4+4x3y+6x2y2+4xy3+y4
=2x4+2y4+4x2y2+4x3y+4xy3+2x2y2
=2(x4+y4+2x2y2)+4xy(x2+y2)+2x2y2
=2(x2+y2)2+4xy(x2+y2)+2x2y2
=2[(x2+y2)+2xy(x2+y2)+x2y2]
=2(x2+y2+xy)2 (Đpcm)
Ta có: \(x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x+y\right)+2x^2y^2\)
\(=2\left[\left(x^2+y^2\right)+2xy\left(x+y\right)+x^2y^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2\left(đpcm\right)\)
Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(\Leftrightarrow x=y=z\)
khai triển và giải thích để e hiểu giúp với ạ !!
Xét vế trái ta có :
\(x^4+y^4+\left(x+y\right)^4\)
= \(x^4+y^4+\left(\left(x+y\right)^2\right)^2\)
= \(x^4+y^4+\left(x^2+y^2+2xy\right)^2\)
= \(x^4+y^4+x^4+y^4+4x^2y^2+2x^2y^2+4x^3y+4xy^3\)
= \(2x^4+2y^4+6x^2y^2+4x^3y+4xy^3\)
= \(2\left(x^4+y^4+3x^2y^2+2x^3y+2xy^3\right)\)
= \(2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2xy^3\right)\)
= \(2\left(x^2+xy+y^2\right)^2\)
=VP
Vậy đăng thức đã được chứng minh