Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)
=> Dấu đẳng thức không xảy ra => Phương trình vô nghiệm.
2. \(x^2+x+1=x^2+\frac{2.x.1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> Dấu đẳng thức không xảy ra = > Phương trình vô nghiệm.
Cách giải thích khác : Vì \(x^2+x+1\)là bình phương thiếu của một tổng nên vô nghiệm.
Xin chào nhóm của bạn!
\(f\left(x\right)=2x^2+10x+21=2x^2+10x+12,5+8,5=2\left(x^2+5x+6,25\right)+8,5\)
\(\Leftrightarrow f\left(x\right)=2\left(x^2+2,5x+2,5x+2,5^2\right)+8,5=2\left[x\left(x+2,5\right)+2,5\left(x+2,5\right)\right]+8,5\)
\(\Leftrightarrow f\left(x\right)=2\left(x+2,5\right)\left(x+2,5\right)+8,5=2\left(x+2,5\right)^2+8,5>0\forall x\)
Vậy \(f\left(x\right)\)vô nghiệm!
Vì 2x2 > hoặc = 0 với mọi x
(x - 1)2 > hoặc = 0 với mọi x
(x + 3)2 > hoặc = 0 với mọi x
Nên 2x2 + (x - 1)2 + (x + 3)2 > hoặc = 0 với mọi x
Vậy đa thức trên vô nghiệm.
F(x)=2(x^2+5x+8)
=2(x^2+2.x.2,5+2,5^2)+3,5
=2(x+2,5)^2+3,5 >=3,5>0
F(x) vô nghiệm
\(2x^2+10x+15=0\)
\(\Leftrightarrow2.\left(x^2+5x+\frac{15}{2}\right)=0\Leftrightarrow x^2+5x+\frac{15}{2}=0\)
\(\Leftrightarrow x^2+5x+\frac{25}{4}+\frac{6}{4}=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=-\frac{6}{4}\)
Vậy...
\(f\left(x\right)=x^2+x^2+4x+6x+4+9+2\)
\(=\left(x^2+4x+4\right)+\left(x^2+6x+9\right)+2\)
\(=\left(x+2\right)^2+\left(x+3\right)^2+2>0\)
Vậy đa thức trên ko có ngiệm
x2+2x+3 = x2 + 2x+1+2 =( x+1)2+2 >0
nen da thuc nay k co nghiem (dpcm)
mk con 1 cach lam nua nhung k phu hop voi lop 7
x^2>=0(1)
2x<=>0
3>0(2)
từ 1 và 2
x^2+3 >0(6)
ta có
x^2=x*x(4)
2x=x+x(3)
từ 4 và 3 : x^2>2x với mọi x
x^2+2x>=0(5)
từ 6 và 5
x^2+2x+3>0
: x^2+2x+3 vô nghiệm