K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

17 tháng 10 2017

\(x^2-xy+y^2=x^2-2.x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2+\frac{3y^2}{4}\)\(=\left(x-\frac{1}{2}y\right)^2+\frac{3y^2}{4}\ge0\) với mọi x,y.

1 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có:

\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)

\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)

Xảy ra khi \(x=y\)

b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)

Đúng với AM-GM 4 số

Xảy ra khi \(x=y=z=t\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:
Đặt $\sqrt{2x}=a; \sqrt{2y}=b$ thì $0\leq a,b\leq 1$

Bài toán trở thành:
CMR:

$\frac{a}{b^2+2}+\frac{b}{a^2+2}\leq \frac{2}{3}$
$\Leftrightarrow 3(a^3+b^3)+6(a+b)\leq 2a^2b^2+4(a^2+b^2)+8(I)$

--------------------------

Thật vậy:

$a^3+b^3=(a+b)(a^2-ab+b^2)\leq 2(a^2-ab+b^2)$

$\Rightarrow 3(a^3+b^3)\leq 6(a^2-ab+b^2)(1)$

$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

$\Rightarrow 6(a+b)\leq 6(ab+1)(2)$

Từ $(1);(2)\Rightarrow 3(a^3+b^3)+6(a+b)\leq 6(a^2+b^2+1)(*)$

Mà:

$6(a^2+b^2+1)-[2a^2b^2+4(a^2+b^2)+8]$

$=2(a^2+b^2-a^2b^2-1)=2(a^2-1)(1-b^2)\leq 0$

$\Rightarrow 6(a^2+b^2+1)\leq 2a^2b^2+4(a^2+b^2)+8(**)$

Từ $(*);(**)$ suy ra $(I)$ đúng. Ta có đpcm.

Dấu "=" xảy ra khi $a=b=1$

20 tháng 5 2017

Đề phải cho \(x,y\) dương nữa!

Giải:

Ta có: \(xy\left(x+y\right)^2\le\dfrac{1}{64}\)

\(\Leftrightarrow\sqrt{xy\left(x+y\right)^2}\le\sqrt{\dfrac{1}{64}}\)

\(\Leftrightarrow\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)

Vậy ta cần chứng minh BĐT tương đương \(\sqrt{xy}\left(x+y\right)\le\dfrac{1}{8}\)

Áp dụng BĐT AM - GM ta có:

\(\sqrt{xy}\left(x+y\right)=\dfrac{1}{2}.2\sqrt{xy}\left(x+y\right)\)

\(\le\dfrac{1}{2}.\dfrac{x+y+2\sqrt{xy}}{4}=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}\) \(=\dfrac{1}{8}\)

\(\Rightarrow xy\left(x+y\right)^2\le\dfrac{1}{64}\) (Đpcm)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{4}\)

1 tháng 6 2018

cho mình hỏi \(\dfrac{1}{2}\) ở đâu vậy bạn