Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a là 1 số chia hết cho 5
=> 4 số nguyên liên tiếp không chia hết cho 5 là: a+1, a+2, a+3, a+4
Hiệu của tích 2 số cuối với hiệu tích 2 số đầu là: (a+3)(a+4) - (a+1)(a+2) = \(a^2+4a+3a+12-\left(a^2+2a+a+2\right)\)
=\(a^2+4a+3a+12-a^2-2a-a-2\)
=\(4a+10\)
Vì a chia hết cho 5 nên tận cùng của a là 0 hoặc 5
Nếu a tận cùng bằng 0 thì 4a tận cùng bằng 0
Nếu a tận cùng bằng 5 thi 4a tận cùng bằng 4.5 = 20 ( tận cùng cũng bằng 0)
=> 4a tận cùng bằng 0
=> 4a + 10 có tận cùng bằng 0
Vậy hiệu của tích 2 số cuối với tích 2 số đầu có tận cùng bằng 0
Tk mình nha
\(999^4+999\)
\(=999\left(999^3+1\right)\)
\(=999\left(999+1\right)\left(999^2-999+1\right)\)
\(=999.1000.\left(999^2-999+1\right)\)có tận cùng là 3 chữ số 0
Coi chữ số tận cùng của n là h
Với n lẻ :
\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)
Tương tự với n chẵn :
\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)
Vậy ...
Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:
\(A=n^5-n\)
A chia hết cho 5 với mọi n thuộc N (*)
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)
(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm
p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Theo mình là như thế
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Tự tìm nha
gọi chữ số tận cùng của 7n là:a
ta có:7n+4=7n.74=(...a).2401=...a
=>đpcm
A có chữ số tận cùng bằng 0 <=> A chia hết cho 10
Ta có : \(A=x^5-x=x\left(x^4-1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)+5x\left(x-1\right)\left(x+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)
Nhận thấy , trong hạng tử đầu tiên là tích của 5 số nguyên liên tiếp
nên tồn tại một số chia hết cho 2 và một số chia hết cho 5
Mặt khác (2;5) = 1 => \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)⋮10\)
Tương tự với hạng tử hai , là tích của 3 số nguyên liến tiếp => tồn tại số chia hết cho 2
=> \(5\left(x-1\right)x\left(x+1\right)⋮10\)
Vậy A chia hết cho 10