K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

Giải: Chú ý vế trái (VT) có n số hạng, n = 1: VT = 1, n = 2: VT = 1 + 3…

  • Với n = 1: (1) ↔ 1 = 1²: mệnh đề này đúng. Vậy (1) đúng khi n = 1.
  • Giả sử (1) đúng khi n = k ↔ 1 + 3 + 5 + … + (2k – 1) = k² (2), ta chứng minh (1) cũng đúng khi n = k + 1 ↔ 1 + 3 + 5 + … + (2k – 1) + [2(k + 1)] = (k + 1)² (3)

Thật vậy: VT(3) = VT(2) + [2(k + 1) - 1]= VP(2) + [2k + 1]

                            = k² + 2k + 1 = (k + 1)²

                            = VP(3) (đpcm)

Theo phương pháp quy nạp, (1) đúng với mọi số nguyên dương n.

9 tháng 8 2018

Số số hạng của dãy số trên là:

( 2n - 1 - 1 ) : 2 +1 

= ( 2n - 2 ) : 2 + 1

= 2( n - 1 ) : 2 + 1

= n - 1 + 1

= n

Tổng của dãy số trên là:

( 2n - 1 + 1 ) . n : 2

= 2n.n : 2

= n.n

= n2

31 tháng 5 2021

help mình vs plz

31 tháng 5 2021

.....

9 tháng 8 2018

Nghĩ ra rồi :D

Số số hạng của dãy số trên là :

( 2n - 1 - 1 ) : 2 + 1

= 2n - 2 : 2 + 1

= 2 ( n - 1 ) : 2 + 1

= n - 1 + 1

= n

Tổng của dãy trên là :

( 2n - 1 + 1 ) . n : 2

= 2n . n : 2

= 2 . n^2 : 2

= n^2 ( đpcm )

học tốt ^^

9 tháng 8 2018

Đặt A = 1 + 3 + 5 +.... + ( 2n - 1 )  

Số số hạng của A là 

( 2n-1 - 1 ) : 2 + 1 = ( 2n-2 ) :2 + 1 = n-1+1 = n

Giá trị của A là 

(2n - 1 + 1 ) x n : 2 = 2n x n :2 = n2

Vậy A = n2  (đpcm)

14 tháng 12 2021

\(5^{n+2}+3^{n+2}-3^n-5^n=5^n\left(5^2-1\right)+3^n\left(3^2-1\right)=5^n.24+3^n.8\)

Ta có \(5^n.24⋮24\) và \(3^n.8⋮3.8=24\)

Vậy ta đc đpcm

14 tháng 12 2021

5n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.85n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.8

Ta có 5n.24⋮245n.24⋮24 và 3n.8⋮3.8=24 vây ta CM đc cái trên

10 tháng 4 2017

mình ko biết nhưng k mình nha

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

4 tháng 10 2018
2 tháng 12 2018

\(5^{n+2}+3^{n+2}-3^n-5^n=\left(5^{n+2}-5^n\right)+\left(3^{n+2}-3^n\right)=5^n\left(25-1\right)+3^n\left(9-1\right)\)

\(=5^n.24+3^n.8\)vì: \(n\in N;n\ne0\Rightarrow3^{n-1}\inℕ\)

\(=5^n.24+3^{n-1}.24=24\left(5^n+3^{n-1}\right)⋮24\)

16 tháng 2 2020

     5n + 2 + 3n + 2 - 3n -5n

= 5n. ( 52 -1 ) + 3n . ( 32 - 1 )

= 5n . 24 + 3n . 8

=  5n . 24 + 3n - 1 . 24

= 24 . ( 5 + 3n )

Vì 24\(⋮\)24

Nên 24 . ( 5 + 3n ) \(⋮\)24

Vậy  5n + 2 + 3n + 2 - 3n -5n \(⋮\)24

a) Ta có: \(34^{2005}-34^{2004}\)

\(=17^{2005}\cdot2^{2005}-17^{2004}\cdot2^{2004}⋮17\)

b) Ta có: \(43^{2004}+43^{2005}\)

\(=43^{2004}\left(1+43\right)\)

\(=43^{2004}\cdot44⋮11\)

c) Ta có: \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9\cdot4⋮4\)

16 tháng 7 2021

Câu d nữa bạn