Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghĩ ra rồi :D
Số số hạng của dãy số trên là :
( 2n - 1 - 1 ) : 2 + 1
= 2n - 2 : 2 + 1
= 2 ( n - 1 ) : 2 + 1
= n - 1 + 1
= n
Tổng của dãy trên là :
( 2n - 1 + 1 ) . n : 2
= 2n . n : 2
= 2 . n^2 : 2
= n^2 ( đpcm )
học tốt ^^
\(5^{n+2}+3^{n+2}-3^n-5^n=5^n\left(5^2-1\right)+3^n\left(3^2-1\right)=5^n.24+3^n.8\)
Ta có \(5^n.24⋮24\) và \(3^n.8⋮3.8=24\)
Vậy ta đc đpcm
5n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.85n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.8
Ta có 5n.24⋮245n.24⋮24 và 3n.8⋮3.8=24 vây ta CM đc cái trên
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
\(5^{n+2}+3^{n+2}-3^n-5^n=\left(5^{n+2}-5^n\right)+\left(3^{n+2}-3^n\right)=5^n\left(25-1\right)+3^n\left(9-1\right)\)
\(=5^n.24+3^n.8\)vì: \(n\in N;n\ne0\Rightarrow3^{n-1}\inℕ\)
\(=5^n.24+3^{n-1}.24=24\left(5^n+3^{n-1}\right)⋮24\)
5n + 2 + 3n + 2 - 3n -5n
= 5n. ( 52 -1 ) + 3n . ( 32 - 1 )
= 5n . 24 + 3n . 8
= 5n . 24 + 3n - 1 . 24
= 24 . ( 5n + 3n )
Vì 24\(⋮\)24
Nên 24 . ( 5n + 3n ) \(⋮\)24
Vậy 5n + 2 + 3n + 2 - 3n -5n \(⋮\)24
a) Ta có: \(34^{2005}-34^{2004}\)
\(=17^{2005}\cdot2^{2005}-17^{2004}\cdot2^{2004}⋮17\)
b) Ta có: \(43^{2004}+43^{2005}\)
\(=43^{2004}\left(1+43\right)\)
\(=43^{2004}\cdot44⋮11\)
c) Ta có: \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9\cdot4⋮4\)
Giải: Chú ý vế trái (VT) có n số hạng, n = 1: VT = 1, n = 2: VT = 1 + 3…
Thật vậy: VT(3) = VT(2) + [2(k + 1) - 1]= VP(2) + [2k + 1]
= k² + 2k + 1 = (k + 1)²
= VP(3) (đpcm)
Theo phương pháp quy nạp, (1) đúng với mọi số nguyên dương n.
Số số hạng của dãy số trên là:
( 2n - 1 - 1 ) : 2 +1
= ( 2n - 2 ) : 2 + 1
= 2( n - 1 ) : 2 + 1
= n - 1 + 1
= n
Tổng của dãy số trên là:
( 2n - 1 + 1 ) . n : 2
= 2n.n : 2
= n.n
= n2