K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= (2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(cậu nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

29 tháng 6 2016

Ta có:

n2 + 4n + 5

= n2 - 1 + 4n + 6

= (n - 1).(n + 1) + 2.(2n + 3)

Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp

=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8

=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8

=> n2 + 4n + 5 không chia hết cho 8

=> đpcm

Ủng hộ mk nha ^-^

14 tháng 12 2015

nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

Tick nha Link Pro

15 tháng 12 2015

ai li-ke mình cho tròn 160 với

15 tháng 12 2015

nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

Các bạn nhwos tick mình nha ^^ 

1 tháng 1 2016

a,        n^2+4n+3 = (n^2-1) +4n+4 = (n-1)(n+1) +4(2a+1)+4 = (n-1)(n+1)+8a+4+4

=(n-1)(n+1)+8a+8 = (n-1)(n+1) + 8.(a+1) 

vì n là lẻ => (n-1) và (n+1) là hai số chẵn liên tiếp => (n-1)(n+1)*8

và 8(a+1)*8 => (n-1)(n+1) + 8.(a+1) *8

vậy n^2+4n+3*8 với n là lẻ ( dấu * là dấu chia hết nhé)

b,           n^3+3n^2-n-3 = (n^3-n) + (3n^2-3) = n(n^2-1) + 3(n^2-1)= n.(n-1)(n+1) + 3.(n-1)(n+1)

=>3(n-1)(n+1) *8 và n(n-1)(n+1)*8 ( vì theo nguyên lý câu a thì (n-1)(n+1)*8  )        (1)

vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên n(n+1)(n-1) chia hết cho 3 và 2 => n(n-1)(n+1)*6

và 3(n-1)(n+1)*3 mà n-1 là chẵn nên 3(n-1)(n+1)*2  => 3(n-1)(n+1)*6 

=> n(n-1)(n+1) + 3(n-1)(n+1) *6                 (2)

từ (1) và (2) => n(n-1)(n+1) + 3(n-1)(n+1) * 6.8 = 48 hay n^3+3n^2-n-3*48

vậy với n là lẻ thì n^3+3n^2 -n-3 luôn chia hết cho 48