K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

Với \(n=1\Leftrightarrow b^n-a^n=b-a⋮b-a\)

G/s \(n=k\Leftrightarrow b^k-a^k⋮b-a\)

Với \(n=k+1\), cần cm \(b^{k+1}-a^{k+1}⋮b-a\)

Ta có \(b^{k+1}-a^{k+1}=b^k\cdot b-a^k\cdot a=b^k\cdot b-a^k\cdot b+a^k\cdot b-a^k\cdot a\)

\(=b\left(b^k-a^k\right)-a^k\left(b-a\right)\)

Vì \(b^k-a^k⋮b-a;b-a⋮b-a\) nên \(b^{k+1}-a^{k+1}⋮b-a\)

Suy ra đpcm

16 tháng 11 2021

Với \(n=1\Leftrightarrow a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)⋮\left(a+b\right)\)

Giả sử \(n=k\Leftrightarrow\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right)\)

Với \(n=k+1\)

Cần cm: \(\left(a^{2k+3}+b^{2k+3}\right)⋮\left(a+b\right)\left(1\right)\)

\(\Leftrightarrow a^{2k+3}+b^{2k+3}=a^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^{2k+1}\cdot a^2+b^{2k+1}\cdot a^2-b^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^2\left(a^{2k+1}+b^{2k+1}\right)-b^{2k+1}\left(a^2-b^2\right)\)

Do \(\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right);\left(a^2-b^2\right)⋮\left(a-b\right)\)

Do đó \(\left(1\right)\) luôn đúng

Theo pp quy nạp suy ra đpcm

24 tháng 9 2017

Trí zẹp zai

24 tháng 9 2017

Bùi Thị Thu Hiền làm con mẹ gì vậy?

15 tháng 9 2021

Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)

Ta có: \(a^2\) = \(\left(5k+4\right)^2\)

      = 25\(k^2\) + 40k + 16

      = 25\(k^2\) + 40k + 15 + 1

      = 5(5\(k^2\)+ 8k +3) +1

Ta có: 5 ⋮ 5 nên 5(5\(k^2\) + 8k + 3) ⋮ 5

Vậy \(a^2\) = (5k+4)25k+42 chia cho 5 dư 1. (đpcm)

15 tháng 9 2021

cảm ơn cậu nha

10 tháng 9 2018

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

21 tháng 6 2016

đặt a=3q+1,b=3p+2 (q; p thuocN). Ta có a.b= 9pq+ 6q + 3p +2. Vậy.....

5 tháng 9 2019

Bài 1:

\(a+b=15\)

\(\Rightarrow\left(a+b\right)^2=225\)

\(\Leftrightarrow a^2+2ab+b^2=225\)

\(\Leftrightarrow a^2+4+b^2=225\)

\(\Leftrightarrow a^2+b^2=221\)

Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)

                               \(=221-4\)

                                \(217\)

Bài 2:

Vì \(x:7\)dư 6

\(\Rightarrow x\equiv-1\left(mod7\right)\)

\(\Rightarrow x^2\equiv1\left(mod7\right)\)

Vậy \(x^2:7\)dư 1

12 tháng 9 2021

up

u

u

u

u

u

 

 

uuupppppppppppp

Bài 2: 

a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-n^2+12n-35\)

\(=12n-36⋮12\)

7 tháng 1 2018

a) Gợi ý: phân tích 50 n + 2   -   50 n + 1 = 245.10. 50 n .

b) Gợi ý: phân tích n 3  - n = n(n - 1)(n +1).