Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ap dung bo de : \(\sqrt{x-1}+\sqrt{y-1}\le\sqrt{xy}\left(x,y\ge1\right)\) (1)
(1) <=> \(2\sqrt{\left(x-1\right)\left(y-1\right)}\le\left(x-1\right)\left(y-1\right)+1\) (dung theo AM-GM)
Ta co \(VT\le\sqrt{ab}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}=VP\)
Dau = xay ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\\left(ab+1\right)\left(c-1\right)=1\end{cases}}\)
Trước hết, ta đi chứng minh bổ đề: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(*) (với \(p,q\ge1\))
Thật vậy: (*)\(\Leftrightarrow\left(\sqrt{p-1}+\sqrt{q-1}\right)^2\le pq\) \(\Leftrightarrow\left(p-1\right)+\left(q-1\right)+2\sqrt{\left(p-1\right)\left(q-1\right)}\le pq\)\(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(pq-p-q+1\right)+1\) \(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(p-1\right)\left(q-1\right)+1\)
Bất đẳng thức cuối đúng theo bất đẳng thức AM - GM vì \(\left(p-1\right)\left(q-1\right)+1\ge2\sqrt{\left(p-1\right)\left(q-1\right).1}=2\sqrt{\left(p-1\right)\left(q-1\right)}\)
Như vậy, ta đã chứng minh được bất đẳng thức phụ: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(với \(p,q\ge1\))
Áp dụng vào bài toán, ta được: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{ab}+\sqrt{c-1}\)\(=\sqrt{\left(ab+1\right)-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\)(q.e.d)
Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\ab\left(c-1\right)=1\end{cases}}\)
Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\)
Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\)
" = " \(\Leftrightarrow a=b=c=1\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn
Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng
Ta có:
\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)
Hoàn toàn tương tự ta có:
\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);
\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo bất đẳng thức trên ta được:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Do đó:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{1}{6\left(ab+bc+ca\right)}\)
Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
\(P=\sum\frac{a}{\sqrt{\left(2a\right)^2+\left(b+c\right)^2}}\le\sqrt{2}\sum\frac{a}{2a+b+c}=\sqrt{2}\sum a\left(\frac{1}{a+b+a+c}\right)\le\frac{\sqrt{2}}{4}\sum\left(\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3\sqrt{2}}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
đặt a-1=x2;b-1=y2;c-1=z2 với x,y,z>0. Bất đẳng thức cần chứng minh trở thành
\(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(y^2+1\right)\left(x^2+1\right)+1\right]}\)
áp dụng bđt Cauchy-Schwarz ta có \(x+y\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\Rightarrow x+y+z\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)+z}\left(1\right)̸\)
\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+z\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)+1}\cdot\sqrt{z^2+1}\)(2)
kết hợp (1) và (2) ta có \(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(x^2+1\right)\left(y^2+1\right)+1\right]}\)
vậy \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\left(đpcm\right)\)