K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2020

Bổ đề: \(\sqrt{u-1}+\sqrt{v-1}\le\sqrt{uv}\left(u,v\ge1\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow u+v-2+2\sqrt{\left(u-1\right)\left(v-1\right)}\le uv\Leftrightarrow\left(u-1\right)\left(v-1\right)+1\ge2\sqrt{\left(u-1\right)\left(v-1\right)}\)(đúng theo bất đẳng thức AM - GM)

Áp dụng bổ đề (*), ta được: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{\left(ab+1\right)-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}ab\left(c-1\right)=1\\\left(a-1\right)\left(b-1\right)=1\end{cases}}\)

19 tháng 12 2021

ai giỏi ạ

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lời giải:

Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)

\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lần sau bạn lưu ý đăng 1 bài 1 lần thôi. Đăng nhiều lần coi như spam và sẽ bị xóa không thương tiếc đấy nhé.

19 tháng 12 2021

mk lớp 7

19 tháng 12 2021

Dấu '' = '' không xảy ra

Áp dụng BĐT AM-GM:

Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)

\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)

Ta có đpcm.

25 tháng 8 2020

Đặt \(\sqrt{a^2-1}=x;\sqrt{b^2-1}=y;\sqrt{c^2-1}=z\)ta viết lại thành x2+y2+z2=1.Bất đẳng thức cần chứng minh tương đương với

\(\left(x+y+z\right)\left(\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\right)\le\frac{9}{2}\)

Theo bất đẳng thức Cauchy-Schwarz ta có

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\le\sqrt{\Sigma\frac{3x^2}{2x^2+y^2+z^2}}\le\sqrt{\frac{3}{4}\Sigma\left(\frac{x^2}{x^2+y^2}+\frac{x^2}{x^2+z^2}\right)}=\frac{3}{2}\)

\(\Leftrightarrow\)\( {\displaystyle \displaystyle \sum } \)\(\frac{y+z}{\sqrt{x^2+1}}\le\sqrt{\Sigma\frac{3\left(y+z\right)^2}{2x^2+y^2+z^2}}\le\sqrt{3\Sigma\left(\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\right)}=3\)

Dấu đẳng thức xảy ra khi \(a=b=c=\frac{2}{\sqrt{3}}\)

22 tháng 5 2021

có vấn đề

22 tháng 5 2021

anhtoan

bài này có người giải rồi

chú ý : đề sai

22 tháng 9 2017

Uả đề sai thì sao làm được?!