K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2.\)

<=>        \(x^2+2xy+y^2+2xz+2yz+z^2-x^2-y^2-z^2=0\)

<=>         \(2xy+2xz+2yz=0\)

<=>          \(2.\left(xy+xz+yz\right)=0\)

<=>           \(xy+xz+yz=0\)

Vậy_

15 tháng 8 2018

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+xz+yz\right)=x^2+y^2+z^2\)

\(\Leftrightarrow2\left(xy+xz+yz\right)=0\)

\(xy+xz+yz=0\left(đpcm\right)\)

2 tháng 8 2019

Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow x=y=z\)

22 tháng 9 2016

Có: \(\left(x+y+z\right)^2-x^2-y^2-z^2\) 

\(=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)

\(=2xy+2yz+2xz\)

\(=2\left(xy+yz+xz\right)\)


 

22 tháng 9 2016

\(\left[\left(x+y\right)+z\right]^2=\left[\left(x+y\right)^2+2.\left(x+y\right)z+z^2\right]=x^2+2xy+y^2+2xz+2yz+z^2\)\(+z^2\)

Thay vào: x^2+y^2+z^2+ 2xy+2yz+2xz - x^2 - y^2 - z^2= 2(xy+yz+xz) (đpcm)