Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cũng là cn của nick trên muốn gợi ý cho các bạn 2 số này là 2 số nguyên tố cùng nhau chỉ cần chứng minh như vậy
Đặt ƯCLN (n+2019; n+2020)=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+2020\right)⋮d\\\left(n+2019\right)⋮d\end{matrix}\right.\Rightarrow\left(n+2020\right)-\left(n+2019\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (n+2019; n+2020)=d=1
\(\Rightarrow\frac{n+2019}{n+2020}\)là phân số tối giản (đpcm)
Gọi dϵƯC(n+2019,n+2020)với d ∈N*
⇒n+2019⋮d,n+2020⋮
⇒(n+2020)-(n+2019)=1⋮d⇒d =1
⇒ĐPCM
Giả sử 7n+3 và 5n+2 có nghiệm nguyên tố là d trong đó d>1.
Khi đó 7n+3 chia hết cho d
=> 5(7n+3) chia het cho d hay 35n+15 chc d (1)
5n+2 chc d
=>7(5n+2) chc d
hay 35n+14 chc d (2)
Tu 1 va 2 ta suy ra 35n+15-(35n+14) chc d hay 1 chc d =>d=1(vô lý với giả thiết vậy phân số đã tối giản
Gọi d = ƯCLN(7n + 3; 5n + 2) (\(d\in\)N*)
=> 7n + 3 chia hết cho d; 5n + 2 chia hết cho d
=> 5.(7n + 3) chia hết cho d; 7.(5n + 2) chia hết cho d
=> 35n + 15 chia hết cho d; 35n + 14 chia hết cho d
=> (35n + 15) - (35n + 14) chia hết cho d
=> 35n + 15 - 35n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(7n + 3; 5n + 2) = 1
=> phân số \(\frac{7n+3}{5n+2}\)là phân số tối giản (đpcm)
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Vì n thuộc Z => n có dạng \(\frac{c}{b}\)(c \(⋮\) b)
=> n + \(\frac{a}{b}\)= \(\frac{c}{b}+\frac{a}{b}=\frac{c+a}{b}\)
vì c\(⋮\) b , a \(⋮\) b (\(\frac{a}{b}\) là phân số tối giản )
=> a+c \(⋮\) b
=> \(\frac{a+c}{b}\) là số tối giản
=> n + \(\frac{a}{b}\) là phân số tối giản
1. goi UCLN ( n + 1; 2n + 3 ) la d ( d thuoc N ), ta co:
*n + 1 chia het cho d
*2n + 3 chia hết cho d
suy ra:
*( n + 1 ) x 2 chia het cho d
*2n + 3 chia hết cho d
suy ra:
*2n + 2 chia hết cho d
*2n + 3 chia hết cho d
suy ra:
*( 2n + 3 ) - (2n + 2 ) chia het cho d
suy ra:
1 chia hết cho d, vì d thuộc N suy ra: d=1
suy ra : UCLN( n + 1; 2n + 3 ) = 1
suy ra : n + 1 trên 2n + 3 toi gian
các câu sau cứ thế mà lm...............
Gọi ƯCLN(n + 2019 ; n + 2020) = d \(\left(d\inℕ^∗\right)\)
=> \(\hept{\begin{cases}n+2019⋮d\\n+2020⋮d\end{cases}\Rightarrow n+2020-\left(n+2019\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> \(\frac{n+2019}{n+2020}\)là phân số tối giản
\(\frac{n+2019}{n+2020}\)
+) Gọi d = ƯCLN ( n + 2019 ; n+2020 ) ( d là số tự nhiên )
\(\Rightarrow\hept{\begin{cases}n+2019⋮d\\n+2020⋮d\end{cases}}\)
\(\Rightarrow n+2020-n+2019⋮d\)
\(\Rightarrow1⋮d\)
Mà d là số tự nhiên
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\) ( n+2019; n+2020 ) =1
\(\Rightarrow\) P/s \(\frac{n+2019}{n+2020}\) tối giản
@@ Học tốt @@
## Chiyuki Fujito