K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

\(ĐặtA=\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\)

\(2A=\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\)

\(2A-A=\left(\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\right)\)

\(A=\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\)

\(2A=3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\)

\(2A-A=\left(3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\right)\)

\(A=3+\frac{1}{2}-\frac{2015}{2^{2013}}-\frac{3}{2}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)

\(A=2-\frac{2015}{2^{2013}}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)

\(A=2-\frac{4030}{2^{2014}}-\frac{2}{2^{2014}}+\frac{2015}{2^{2014}}\)

\(A=2-\frac{4032}{2^{2014}}+\frac{2015}{2^{2014}}\)

\(A=2-\frac{2017}{2^{2014}}< 2\)

=> đpcm

5 tháng 7 2016

Bài này dễ thôi mà nhưng mình chỉ gợi ý thôi nhé! Bạn phải đổi phần mẫu số ra đã nhé ! *CỐ LÊN*

8 tháng 4 2017

gọi dãy số trên là A

ta có A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

A<1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

A<1-\(\frac{1}{2014}\)=\(\frac{2013}{2014}\)

Vậy A < \(\frac{2013}{2014}\)

8 tháng 4 2017

ko biết

20 tháng 3 2016

xét mẫu(chỗ 1/2014 sửa lại thành 2/2014)

=(1/2015+1)+(2/2014+1)+...+(2013/3+1)+(2014/2+1)+(2015/1-2014)

=2016/2015+2016/2014+...+2016/3+2016/2+1

=2016.(1/2016+1/2015+...+1/4+1/3+1/2)

=> A= 1/2016

mún dễ hỉu hơn hãy gửi tin nhắn cho mik

20 tháng 3 2016

1 phan 2016. cac lam de lam

21 tháng 4 2015

có 2014/1+2013/2+2012/3+...+2/2013+1/2014=[1+(2013/2)]+[1+(2012/3)]+...+[1+(2/2013)]+[1+(1/2014)]+1

=2015/2+2015/3+...+2015/2014+2015/2015=2015.[1/2+1/3+..+1/2015)

vậy (1/2+1/3+...+1/2015).x=(1/2+1/3+...+1/2015).2015

x=2015

26 tháng 3 2017

\(TA-CO':\)

\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)

\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)

\(A=\frac{4}{7}\)

\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)

ĐẶT \(C=1+2+...+2^{2013}\)

\(\Rightarrow2C=2+2^2+...+2^{2014}\)

\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)

\(\Rightarrow C=2^{2014}-2\)

\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)

\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)

\(B=\frac{1}{2}\)

\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)

\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)

VẬY, \(A-B=\frac{-1}{14}\)