K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

A = \(\frac{1}{3}\)  + \(\frac{2}{3^2}\)  + \(\frac{3}{3^3}\) + \(\frac{4}{3^4}\) +....+ \(\frac{100}{3^{100}}\) 

3A = 1 + \(\frac{2}{3}\) + \(\frac{3}{3^2}\) + \(\frac{4}{3^3}\)  +...+ \(\frac{100}{3^{99}}\) 

\(\Rightarrow\) 3A - A = 1+ \(\left(\frac{2}{3}-\frac{1}{3}\right)\) + \(\left(\frac{3}{3^2}-\frac{2}{3^2}\right)\) + ... + \(\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)\)   - \(\frac{100}{3^{100}}\)  

   2A =1+ \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\) 

Đặt B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{99}}\)

\(\Rightarrow\) 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\) 

\(\Rightarrow\) 2B = \(1-\frac{1}{3^{99}}\)  

\(\Rightarrow\) \(B=\left(1-\frac{1}{3^{99}}\right):2\)   

Thay 2A = 1 + \(\frac{1}{2}\) - \(\left(1-\frac{2}{3^{99}}\right)\)  - \(\frac{100}{3^{100}}\)   < 1 + \(\frac{1}{2}\) = \(\frac{3}{2}\)  

Vậy A < \(\frac{3}{4}\) 

Vậy:...........

24 tháng 10 2016

bạn ơi từ khúc đặt B đi xuống bn xem lại giùm mình coi sai gì ko nha

7 tháng 1 2020

Đặt :

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+........+\frac{100}{3^{100}}\)

\(\Leftrightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+.....+\frac{100}{3^{99}}\)

\(\Leftrightarrow3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+....+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+....+\frac{100}{3^{100}}\right)\)

\(\Leftrightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+........+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt : \(H=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\) \(\Leftrightarrow2A=H-\frac{100}{3^{100}}\)

\(\Leftrightarrow3H=3+1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}\)

\(\Leftrightarrow3H-H=\left(4+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)\)

\(\Leftrightarrow2H=3-\frac{1}{3^{99}}\)

\(\Leftrightarrow H=\frac{3-\frac{1}{99}}{2}\)

\(\Leftrightarrow2A=\frac{3-\frac{1}{3^{99}}}{2}-\frac{100}{3^{100}}\)

\(\Leftrightarrow A=\frac{1-\frac{1}{3^{99}}}{2}-\frac{100}{2.3^{100}}\)

\(\Leftrightarrow A< \frac{3}{4}\left(đpcm\right)\)

7 tháng 1 2020

Mà sao bạn tức giận thế nhỉ, mọi khi có thể đâu. Khổ thật. khocroi

Nguyễn Văn Đạt

13 tháng 4 2017

hình như đề sai bởi vì trong dãy số có số 4/4^3

10 tháng 6 2017

\(\frac{4}{3^4}\)moi dung

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

27 tháng 9 2020

sửa rồi nhá bn

8 tháng 8 2020

Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó

8 tháng 8 2020

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

Nên từ đây => \(A< 1\)     (ĐPCM)

24 tháng 10 2016

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

4 tháng 11 2019

Có phải ở sách NCPT ko bn

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha