K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 12 2021

Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên $n(n-1)(n+1)\vdots 3$
Vì $n(n-1)$ là tích 2 số nguyên liên tiếp nên $n(n-1)\vdots 2$

$\Rightarrow n^5-n\vdots 2,3$
Mà $(2,3)=1$ nên $n^5-n\vdots 6(*)$

Mặt khác:
Ta biết rằng 1 scp chia 5 có thể có dư là $0,1,4$
$\Rightarrow n(n^2-1)(n^2+1)\vdots 5, \forall n$ nguyên $(**)$

Từ $(*); (**)\Rightarrow n^5-n\vdots (5.6=30)$

15 tháng 8 2021

a/ \(n^3-n=\left(n-1\right)n\left(n+1\right)\) 

Ta có : \(n\in Z\Leftrightarrow n-1;n;n+1\in Z\) và là 3 số nguyên liên tiếp

\(\Leftrightarrow n^3-n⋮6\left(đpcm\right)\)

b/ \(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)

Ta có : \(n\left(n-1\right)\left(n+1\right)⋮6\)

+) Nếu \(n=5k\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮5\Leftrightarrow A⋮30\)

+) Nếu \(n=5k+1\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮5\Leftrightarrow A⋮30\)

+) Nếu \(n=5k+2\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮5\Leftrightarrow A⋮30\)

+) Nếu \(n=5k+3\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮5\Leftrightarrow A⋮30\)

+) Nếu \(n=5k+4\Leftrightarrow n\left(n-1\right)\left(n+1\right)⋮30\Leftrightarrow A⋮30\)

Vậy...

a: \(n^3-n\)

\(=n\left(n^2-1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)

Vì n-1, n và n+1 là ba số tự nhiên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

b: Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮30\)

22 tháng 1 2018

\(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n^2+1\right)\left(n+1\right)\left(n-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n^2-4+5\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n-2\right)+5n\left(n+1\right)\left(n-1\right)⋮5\)