Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
Sơ đồ con đường |
Lời giải chi tiết |
|
Xét 7 6 + 7 5 − 7 4 = 7 4 . 7 2 + 5 − 1 = 7 4 .55 Áp dụng tính chất chia hết của một tích: 55 ⋮ 11 ⇒ 7 4 .55 ⋮ 11 ⇒ 7 6 + 7 5 − 7 4 ⋮ 11 |
Bài 2:
\(x^5=x^3\)
\(\Rightarrow x^5-x^3=0\)
\(\Rightarrow x^3\left(x^2-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc \(x^2-1=0\)
+) \(x^3=0\Rightarrow x=0\)
+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)
Vậy \(x\in\left\{0;1;-1\right\}\)
13! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13
Ta thấy 13! chia hết cho 5 và 11. (1)
11! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11
Ta thấy 11! chia hết cho 5 và 11. (2)
Từ (1) và (2) => 13! - 11! chia hết cho 55 vì ( 5; 11 ) = 1
7^6+7^5-7^4=7^4(7^2+7-1)=7^4(49+7-1)=7^4.55:hết cho 55(đpcm)