Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)
ta có:
(a+1).a.(a-1) chia hết cho 6
(a+1).(a+3).a+2) chia hết cho 6.
(3 số tự nhiên liên kề thì chia hết cho 6);
suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6
a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6
Câu b) tương tự.
Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?
\(a+3\text{ chia hết cho 5 do đó:}a\text{ chia 5 dư 2};\text{ }b+4\text{ chia hết cho 5 nên }b\text{ chia 5 dư 1}\)
\(\text{ do đó:}a^2+b^2\equiv2^2+1^2\equiv5\equiv0\left(\text{mod 5}\right)\text{ ta có điều phải chứng minh}\)
Vì \(a+3⋮5\)\(\Rightarrow\)\(a\)có dạng \(a=5m+2\)( \(m\inℤ\))
\(b+4⋮5\)\(\Rightarrow\)\(b\)có dạng \(b=5n+4\)( \(n\inℤ\) )
\(a^2+b^2=\left(5m+2\right)^2+\left(5n+1\right)^2\)
\(=25m^2+20m+4+25n^2+10n+1\)
\(=25m^2+20m+25n^2+10n+5⋮5\)( đpcm )
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Câu 1:
Ta có:
\(n=11k+4\)
\(\Rightarrow n^2=\left(11k+4\right)^2=121k^2+88k+16\)
Vì \(121k^2\) chia hết cho 11; \(88k\) chia hết cho 11 và 16 chia cho 11 dư 5 nên
\(121k^2+88k+16\) chia cho 11 dư 5
Do đó \(n^2\) chia cho 11 dư 5.
Câu 2:
Ta có:
\(n=13k+7\)
\(\Rightarrow n^2-10=\left(13k+7\right)^2-10\)
\(=169k^2+182k+49-10=169k^2+182k+39\)
Vì \(169k^2;182k;39\) chia hết cho 13 nên \(169k^2+182k+39\) chia hết cho 13.
Do đó \(n^2-10\) chia hết cho 13.
Chúc bạn học tốt!!!
Gọi bốn số liên tiếp là 5k+1;5k+2;5k+3;5k+4
Ta có: \(\left(5k+1\right)^2+\left(5k+2\right)^2+\left(5k+3\right)^2+\left(5k+4\right)^2\)
\(=25k^2+10k+1+25k^2+20k+4+25k^2+30k+9+25k^2+40k+16\)
\(=100k^2+100k+30\)
\(=10\left(10k^2+10k+3\right)⋮10\)
Ta có:
\(3^{1999}=3^{2000}:3=\left(3^2\right)^{1000}:3=9^{1000}:3=...1:3=...7\)
\(7^{1997}=7^{1996}.7=\left(7^2\right)^{998}.7=49^{998}.7=...1.7=...7\)
Do đó: \(3^{1999}-7^{1997}=...7-...7=...0\)
Vì \(...0\)chia hết cho 5 \(\Rightarrow3^{1999}-7^{1997}\)chia hết cho 5
Nguồn: https://olm.vn/hoi-dap/detail/41637165008.html
Chúc bạn học tốt !!!
Ta có : 31999 = 31996 . 33 = (34)499 . (....7) = (....1)499 . (...7) = ...7
71997 = 71996 . 7 = (74)499 . 7 = (....1)499 . 7 = ...7
Khi đó 31999 - 71997 = ...7 - ...7 = ...0
=> \(3^{1999}-7^{1997}⋮5\left(\text{đpcm}\right)\)