K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2020

\(x^4+4x^3+6x^2+4x+1\)

\(=\left(x^4+2x^3+x^2\right)+\left(2x^3+4x^2+2x\right)+\left(x^2+2x+1\right)\)

\(=x^2\left(x^2+2x+1\right)+2x\left(x^2+2x+1\right)+\left(x^2+2x+1\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+1\right)=\left(x+1\right)^4\ge0;\forall x\in R\)

10 tháng 10 2020

Ta có: \(x^2-2\left(3m-1\right)x+m+3\ge0\)

\(\Leftrightarrow f\left(m\right)=\left(-6x+1\right)m+x^2+2x+3\ge0\)

Ta thấy \(f\left(m\right)\) là hàm số bậc nhất mà \(x\in[1;+\infty)\Rightarrow-6x+1< 0\)

\(\Rightarrow\) Hàm \(f\left(m\right)\) nghịch biến

Từ giả thiết \(m\le1\Rightarrow f\left(m\right)\ge f\left(1\right)\)

\(\Leftrightarrow x^2-2\left(3m-1\right)x+m+3\ge\left(x-2\right)^2\ge0\left(đpcm\right)\)

30 tháng 3 2017

\(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\left(1\right)\)

*) Xét \(x=y=0\) thì \(\left(1\right)\) luôn đúng

*) Xét \(x,y>0\) ta có: \(VT=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Áp dụng BĐT AM-GM ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2-xy+y^2\ge2xy-xy=xy\)

\(\Rightarrow VT=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\left(2\right)\)

Lại có: \(VP=x^2y+xy^2=xy\left(x+y\right)\left(3\right)\)

Từ \(\left(2\right)\)\(\left(3\right)\) suy ra BĐT được chứng minh

Vậy \(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\)

30 tháng 3 2017

x3+y3\(\geq\) x2y + xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0

Xét x=0,y=0 thì bất đẳng thức này luôn đúng.(*)

Xét x>0,y>0,ta có CM bất đẳng thức đó luôn đúng

x3+y3\(\geq\) x2y+xy2

\(\Leftrightarrow\) x3+y3-x2y-xy2\(\geq\)0

\(\Leftrightarrow\) (x3-x2y) + (y3-xy2) \(\geq\)0

\(\Leftrightarrow\) x2(x-y) - y2(x-y) \(\geq\) 0

\(\Leftrightarrow\) (x-y)(x2-y2) \(\geq\) 0

\(\Leftrightarrow\) (x-y)(x-y)(x+y) \(\geq\) 0

\(\Leftrightarrow\) (x-y)2(x+y) \(\geq\) 0 (1)

Ta có (x-y)2\(\geq\)0, x+y >0(vì x>0,y>0)

Nên bất phương trình (1); (x-y)2(x+y) \(\geq\) 0(luôn đúng)(**)

Từ(*) và (**) suy ra BĐT được chứng minh:

x3+y3\(\geq\) x2y+xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0

Dấu "=" xảy ra khi và chỉ khi x=y.

NV
12 tháng 4 2019

\(P=sin^4x+cos^4x+2sin^2xcos^2x-\frac{1}{2}\left(2sinx.cosx\right)^2\)

\(P=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}sin^22x\)

\(P=1-\frac{1}{2}sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow\frac{1}{2}\le P\le1\)

Đáp án B

5 tháng 7 2021

1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)

\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)

Vậy...

2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)

\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)

\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)

\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)

Vậy...

3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)

\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)

\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)

Vậy...

4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)

\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)

\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)

Vậy...

5, Xem lại đề

6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)

\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)

Vậy...