K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

\(x^2-6x+11=\left(x^2-6x+9\right)+2\)\(=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)

Mặt khác 2 > 0 nên \(\left(x-3\right)^2+2>0\Leftrightarrow x^2-6x+11>0\)\(\forall x\inℝ\)

27 tháng 10 2021

\(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x^2-6x+9\right)+2\)

\(=\left(x-3\right)^2+2\)

Với mọi \(x\) ta có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2>0,\forall x\)

Vậy \(x^2-6x+11>0\forall x\)

23 tháng 10 2016

Chỗ 3y3 sửa lại thành 3y2 nhé!

9 tháng 12 2019

a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)

27 tháng 10 2021

\(\left(x^2+6x+8\right)\left(x^2+14x+48\right)+16\)

\(=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)

\(=\left(x^2+10x+20\right)^2\)

\(x^2+4x+3=x^2+3x+x+3=\left(x^2+3x\right)+\left(x+3\right)=x\left(x+3\right)+\left(x+3\right)=\left(x+3\right)\left(x+1\right)\)

2 tháng 1 2023

m.n giúp mk câu này vs ạ 

(\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}+\dfrac{16}{4-x^2}\)) : (\(\dfrac{4}{2-x}-\dfrac{8}{2x-x^2}\))

26 tháng 12 2021

\(=x^3\left(x+2\right)-x\left(x+2\right)\)

\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)

Vì đây là tích của bốn số nguyên liên tiếp

nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)

25 tháng 6 2018

Giải:

a) \(x^2+xy+y^2+1\)

\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)

Vậy ...

26 tháng 6 2018

Hắc Hường BĐT ở đây. Cj nghĩ cấp 2 chỉ học 1 số loại này thôi

1.BĐT Cauchy

\(A+B\ge2\sqrt{AB}\) (Áp dụng cho 2 số k âm)

\(A+B+C\ge3\sqrt[3]{ABC}\) (Áp dụng cho 3 số k âm )

2.BĐT Bunhiacopxki

\(\left(Ax+By\right)^2\le\left(A^2+B^2\right)\left(x^2+y^2\right)\)

3.BĐT Mincopxki

\(\sqrt{A^2+x^2}+\sqrt{B^2+y^2}\ge\sqrt{\left(A+B\right)^2+\left(x+y\right)^2}\)

4.BĐT Chebyshev

Với A>B, x>y thì

\(\left(A+B\right)\left(x+y\right)\le2\left(ax+by\right)\)

Vs 3 sô thì bên vế phải thay 2 bằng 3

5.BĐT Benuli

\(\left(1+h\right)^n\ge1+nh\)

6.BĐT Holder

Với a,b,c,x,y,z,m,n,p là sô thực dương

\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

7.BĐT Sơ-vác-sơ

\(\dfrac{a_1^2}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)

8. \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

9. \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

10. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)

11. \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\ge4xy\)

12. \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)13. \(a^3+b^3\ge a^2b+ab^2\)

14. \(\dfrac{a^3}{b}\ge a^2+ab-b^2\)( Ít áp dụng )

15. \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\left|\dfrac{x}{y}\right|+\left|\dfrac{y}{x}\right|\ge\left|\dfrac{x}{y}+\dfrac{y}{x}\right|\ge2\)

16. \(a^2+b^2+c^2\ge ab+ac+bc\)

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

23 tháng 12 2021

c: \(=\left(x+1\right)^2+1>0\forall x\)

5 tháng 2 2022

Trả lời:

a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của biểu thức bằng 2 khi x = 3

b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTLN của biểu thức bằng - 2 khi x = 3

c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\)  (đpcm)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1