Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)
Thay x = 2 vào, ta được:
\(f\left(2\right)+2f\left(\frac{1}{2}\right)=2^2\Rightarrow f\left(2\right)=2f\left(\frac{1}{2}\right)=4\left(\text{*}\right)\)
Thay \(x=\frac{1}{2}\) vào, ta được:
\(f\left(\frac{1}{2}\right)+2\left(\frac{1}{\frac{1}{2}}\right)=\left(\frac{1}{2}\right)^2\Rightarrow f\left(\frac{1}{2}\right)+2f\left(2\right)=\frac{1}{4}\Rightarrow2f\left(\frac{1}{2}\right)+4f\left(2\right)=\frac{1}{2}\left(\text{*}\text{*}\right)\)
Từ (*) và (**) \(\Rightarrow f\left(2\right)+2f\left(\frac{1}{2}\right)-\left(2f\left(\frac{1}{2}\right)+4f\left(2\right)\right)=4-\frac{1}{2}\)
\(\Rightarrow f\left(2\right)+2f\left(\frac{1}{2}\right)-2f\left(\frac{1}{2}\right)-4f\left(2\right)=\frac{7}{2}\)
\(\Rightarrow-3f\left(2\right)=\frac{7}{2}\)
\(\Rightarrow f\left(2\right)=\frac{7}{2}.\left(-3\right)=\frac{-7}{6}\)
a) Ta có: \(y=f\left(x\right)=4x^2-5\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(3\right)=4.3^2-5=31\\f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2-5=-4\end{matrix}\right.\)
b) Ta có: \(f\left(x\right)=-1\)
\(\Rightarrow4x^2-5=-1\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{1;-1\right\}\) thì \(f\left(x\right)=-1\)
c) \(\forall x\in R,f\left(x\right)=f\left(-x\right)\Leftrightarrow f\left(-x\right)=4.\left(-x\right)^2-5=4x^2-5=f\left(x\right)\)
Vậy \(\forall x\in R\) thì \(f\left(x\right)=f\left(-x\right)\)
\(a.f\left(3\right)=4.3^2-5=31.\\ f\left(\dfrac{-1}{2}\right)=4.\left(\dfrac{-1}{2}\right)^2-5=-4.\)
\(b.f\left(x\right)=-1.\Rightarrow4x^2-5=-1.\\ \Leftrightarrow4x^2=4.\Leftrightarrow x^2=1.\\ \Leftrightarrow x=\pm1.\)
\(c.f\left(x\right)=f\left(-x\right).\\ \Rightarrow4x^2-5=4\left(-x\right)^2-5.\\ \Leftrightarrow4x^2-5=4x^2-5.\)
\(\Leftrightarrow0x=0\) (luôn đúng).
Vậy với mọi x ∈ R thì f (x)= f (-x).
\(M=x^4-x-\left(x^3-1\right)+x^2=x\left(x^3-1\right)-\left(x^3-1\right)+x^2\)
\(M=\left(x-1\right)\left(x^3-1\right)+x^2=\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\)
\(M=\left(x-1\right)^2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right)+x^2\)
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\\x^2\ge0\end{matrix}\right.\) \(\Rightarrow M\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại \(x\) thỏa mãn
\(\Rightarrow M>0\) \(\forall x\in R\)
Ơ nhưng tại sao đang x(x³-1) xog cái đc luôn(x-1) z ạ?? Xin lỗi mk hơi ngu=33