K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

a) Phân tích  15 n   + 15 n + 2 = 113.2. 15 n .

b) Phân tích  n 4   –   n 2 = n 2 (n - 1)(n +1).

19 tháng 10 2021

hỏi từ lâu hổng ai trả lời hihi

1 tháng 3 2021

1) n+ 4 = (n+ 4n+ 4) - 4n= (n+ 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1  1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

1 tháng 3 2021

undefined

undefined

17 tháng 8 2016

Giả sử ab + 4 là số chính phương

Ta có: ab + 4 = x2

=> ab = x2 - 4

=> ab = (x - 2).(x + 2)

Giử sử a > b => a = x + 2; b = x - 2

=> a - b = (x + 2) - (x - 2)

=> a - b = x + 2 - x + 2

=> a - b = 4

=> với a - b = 4 thì ab + 4 là số chính phương

=> điều giả sử là đúng

ta có: giả sử ab + 4 = A2

<=> A2 - 4 = ab

<=> A2 - 22 = ab

<=> (A - 2) (A + 2) = ab : luôn đúng với mọi a,b

=> ĐCCM

t i c k nha!! 5675675677687697843543543534456567567876876876897

1 tháng 5 2019

Ta có :

n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 2 )

Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số

1 tháng 5 2019

 Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn

(+)  Nếu n = 2k =)  n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2     (1)

(+)  Nếu n = 2k + 1 =)  n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2     (2)

    Từ (1) và (2) ta có điều phải chứng minh

29 tháng 7 2021

Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).

Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))

Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.

Vậy...