Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯCLN của 21n+4 và 14n+3
=> 21n+4 chia hết cho d =>2.(21n+4) chia hết cho d
14n+3 chia hết cho d =>3.(14n+3) chia hết cho d
=> (42n+9)-(42n+8) chia hết cho d
=> 42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư(1)={1}
=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
gọi d là UCLN (21n+4;14n+3)
ta có:
[3(14n+3]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1
=>phân số trên tối giản vs mọi n
) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản
Để cm 21n+4/14n+3 tối giản thì ta phải cm 21n + 4 ;2n + 3 là nguyên tố cùng nhau
Ta gọi d là ƯCLN ( 21n + 4 ; 14n + 3 )
=> 21n + 4 ⋮ d => 2.( 21n + 4 ) ⋮ d => 42n + 8 ⋮ d ( 1 )
=> 14n + 3 ⋮ d => 3.( 14n + 3 ) ⋮ d => 42n + 9 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 42n + 9 ) - ( 42n + 8 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( 21n + 4 ; 12n + 3 ) = 1 nên 21n + 4 và 12n + 1 là nguyên tố cùng nhau
=> 21n+4/14n+3 là p/s tối giản
giả sử (21n+4)/(14n+3) là phân số không tối giản
=> tồn tại d > 1 là ước số chung của (21n+4) và 14n+3)
hay (21n+4) và 14n+3) cùng chia hết cho d > 1
=> 3(14n +3) - 2(21n + 4) = 1 chia hết cho d > 1 vô lý
=> đpcm
\(d=\left(21a+4,14a+3\right)\Rightarrow\hept{\begin{cases}21a+4⋮d\\14a+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42a+8⋮d\\42a+9⋮d\end{cases}}\Rightarrow\left(42a+9\right)-\left(42a+8\right)=1⋮d\Rightarrow d=1\)
\(\Rightarrow\text{đ}cpm\)
Gọi \(\left(21n+4;14n+3\right)=d\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2.\left(21n+4\right)⋮d\\3.\left(14n+3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n là số tự nhiên
gọi UCLN( 14n +3 , 21n +4 ) =d (1)
=> 21n+4 và 14n+3 chia hết cho d => 21n+4 - 14n-3 chia hết cho d
=> 7n+1 chia hết cho d =>( 7n+1 ). 2 chia hết cho d => 14n +2 chia hết cho d
=> 14n+ 3 - 14n - 2 chia hết cho d =>1 chia hết cho d => d thuộc ước của 1 (2)
từ (1) ,(2) => dpcm
Gọi UCLN(14n+3,21n+4) =a
ta có :14n+3 chia hết cho a ; 21n+4 chia hết cho a
suy ra (21n+4) : 3 .2 chia hết cho a và 14n+3 chia hết cho a
suy ra 14n+2 chia hết cho a và 14n+3 chia hết cho a
suy ra (14n+3) - (14n+2) chia hết cho a
suy ra 14n+3 - 14n-2 chia hết cho a
suy ra 1 chia hết cho a
và a thuộc U(1) = 1
Vậy 14n+3/14n+4 là phân số tối giản
chúc bạn học tốt
Gọi d là ƯCLN (21n+4;14n+3)
\(\Rightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
\(\Rightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)=1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(21n+4;14n+3\right)=1\)
\(\Rightarrow\frac{21n+4}{14n+3}\)tối giản
Vậy: Với mọi số tự nhiên n thì \(\frac{21n+4}{14n+3}\) tối giản