K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

10^n tan cung la 1 ...

18n - 1 chia het cho 9, tan cung la -1 ...

=> 1 + (-1) = 0 chia het cho 27

Hieu thi tu lam

Khong hieu thi ke :D

15 tháng 11 2021

-.-

 

16 tháng 7 2015

TH1: n chia hết cho 3

=> n2 + n chia hết cho 3 

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 2

TH2: n chia 2 dư 1

=> n2 chia 3 dư 1

=> n2 + n chia 3 dư 2

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 1

TH3: n chia 3 dư 2

=> n2 chia 3 dư 1

=> n2 + n chia hết cho 3

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 2

KL: Vậy với mọi số nguyên n thì n2 + n + 2 không chia hết cho 3 (đpcm)

16 tháng 7 2015

Hồ Thu Giang ơi ! Bạn xem kĩ bài đi, sai 1 số chỗ đấy ! 

28 tháng 11 2018

Đặt  \(A=n^6+n^4-2n^2=n^2(n^4-n^2-2)\)

          \(=n^2(n^4-1+n^2-1)\)

          \(=n^2\left[(n^2-1)(n^2+1)+n^2-1\right]\)

          \(=n^2(n^2-1)(n^2+2)\)

          \(=n\cdot n(n-1)(n+1)(n^2+2)\)

           + Nếu n chẵn ta có n = 2k \((k\in N)\)

\(A=4k^2(2k-1)(2k+1)(4k^2+2)=8k^2(2k-1)(2k+1)(2k^2+1)\)

\(\Rightarrow A⋮8\)

             

+ Nếu n lẻ ta có n = 2k + 1 \((k\in N)\)

\(A=(2k+1)^2\cdot2k(2k+2)(4k^2+4k+1+2)\)

\(=4k(k+1)(2k+1)^2(4k^2+4k+3)\)

k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 

\(\Rightarrow A⋮8\)

Do đó A chia hết cho 8 với mọi \(n\in N\)

* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra \(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n \(\in N\)

Chúc bạn học tốt :>

17 tháng 7 2019

Ta có A= 5n^3+15n^2+10n=5n^3+5n^2 +10n62+10n

=5n^29 (n+1)+10n (n+1) =(n+1).(5n^2+10n) 

5n (n+1).(n+2)

do n (n=1) (n+2)chia hết cho 6

suy ra Achia hết cho 30(n thuộc z)

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

27 tháng 12 2017

12345678

28 tháng 12 2017

\(A=a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36\)

\(A=a\left(a+6\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+1\right)+36\)

\(A=\left(a^2+6a\right)\left(a^2+6a+8\right)\left(a^2+6a+5\right)+36\)

Đặt t = a2 +6a. Khi đó phương trình trở thành:

\(A=t\left(t+8\right)\left(t+5\right)+36\)

\(A=t\left(t^2+13t+40\right)+36\)

\(A=t^3+13t^2+40t+36\)

\(A=t^3+2t^2+11t^2+22t+18t+36\)

\(A=t^2\left(t+2\right)+11t\left(t+2\right)+18\left(t+2\right)\)

\(A=\left(t+2\right)\left(t^2+11t+18\right)\)

\(A=\left(t+2\right)\left(t^2+2t+9t+18\right)\)

\(A=\left(t+2\right)\left[t\left(t+2\right)+9\left(t+2\right)\right]\)

\(A=\left(t+2\right)\left(t+2\right)\left(t+9\right)\)

\(A=\left(t+2\right)^2\left(t+9\right)\)

Thế t = a2 + 6a vào A ta được:

\(A=\left(a^2+6a+2\right)^2\left(a^2+6a+9\right)\)

\(A=\left(a+3\right)^2\left(a^2+6a+2\right)^2\)

\(A=\left[\left(a+3\right)\left(a^2+6a+2\right)\right]^2\)

Vậy với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương

3 tháng 8 2019

\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)

Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)

(2n+5)2-25

=(2n+5)2-52

=(2n+5-5) x ( 2n+5+5)

=2n x ( 2n+10)

=4n x (n+5)

vì 4n chia hết cho 4 nên 4n x (n+5) chia hết cho 4

vậy (2n+5)2-25 chia hết cho 4

9 tháng 8 2019

cảm ơn bn