K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

Ta có a3+11a=a(a2+11) = a(a2-1+12)= a(a-1)(a+1)+12a

\(\left\{{}\begin{matrix}a\left(a-1\right)\left(a+1\right)\\12a\end{matrix}\right.⋮6\Leftrightarrow a\left(a-1\right)\left(a+1\right)+12a⋮6\)

=> a3+11a ⋮6 (\(\forall a\in Z\))

27 tháng 7 2017

Ta có:a3+11a

=a3-a+12a

=a(a2-1)+12a

=(a-1)(a+1)a+12a

Vì a-1;a;a+1 là tích 3 số nguyên liên tiếp nên a(a-1)(a+1) chia hết cho 6

Mà 12a chia hết cho 6

Suy ra a3+11a chia hết cho 6

21 tháng 10 2015

13.11 không chia hết cho 6 nha bạn

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

4 tháng 3 2021

\(a^3 - a = a(a^2-1) = a(a-1)(a+1) = (a-1)a(a+1)\)

Tích hai số tự nhiên liên tiếp luôn chia hết cho 2 :

 \((a-1)a\) ⋮ 2 (1)

Tích ba số tự nhiên liên tiếp luôn chia hết cho 3 : 

\((a-1)a(a+1)\) ⋮ 3(2)

Từ (1)(2) suy ra: điều phải chứng minh

17 tháng 10 2021

\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6

27 tháng 12 2015

câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.

câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120

bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào