K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

Ta gọi UWCLN của 2n-1 và 4n+2 là d

Ta có 2n-1 chia het cho d vậy 4n-2 chia hết cho d

         4n+2 chia hết cho d vậy 4n+2-4n-2 chia het cho d

Vậy 4 chia hết cho d nên d=1 để 2n-1/4n+2 là tối giản

Vậy 2n-1/4n+2 là tối giản   

3 tháng 1 2016

2n+3 co tan cung la 1 so le

Ma 4n+8 thuoc dang 4k la so chan => 2 so tren la uoc nguyen to cung nhau

2n+3:d=> 4n+6:d

=> 4n+8-4n+6:d

=>2:d

Ma 2n+3 la so le

=> 2 so tren la so nguyen to cung nhau

28 tháng 5 2021

Gọi d là ước chung lớn nhất của 3n+1 và 4n+1 (d thuộc N*)

Ta có : 3n+1 chia hết cho d

            4n +1 chia hết cho d

==> (4n+1) - (3n+1)  chia hết cho d

 Hay:          n             chia hết cho d

==>            3n          chia hết cho d

mà        3n+1           chia hết cho d (cmt)

==> (3n+1) - 3n       chia hết cho d

Hay:       1               chia hết cho d

mà           d thuộc N*

==> d = 1 

==> 3n+1 và 4n+1 nguyên tố cùng nhau

==> 3n+1/4n+1 là phân số tối giản. (đpcm)

28 tháng 5 2021

Gọi d là ƯCLN  ( 3n + 1; 4n + 1 )

\(\Rightarrow\)\(3n+1⋮\)\(\Rightarrow\)\(4.\left(3n+1\right)⋮\)d   \(\left(1\right)\)

\(\Rightarrow4n+1⋮\)\(\Rightarrow\)\(3.\left(4n+1\right)⋮\) d \(\Rightarrow\)\(12n+3⋮\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\text{[}\left(12n+4\right)-\left(12n+3\right)\text{]}⋮\)

\(\Rightarrow1⋮\)\(\Rightarrow\)d = 1

Vì ƯCLN  ( 3n + 1 ; 4n + 1 ) = 1 nên \(\frac{3n+1}{4n+1}\)là phân số tối giản

25 tháng 4 2016

a) ta có n+1/2n+3    gọi ƯCLN 2 số là d

 n+1 chia hết cho d

2n+3 chia hết cho d 

=> 2n+3-2(n+1) chia hết cho d

vậy 1 chia hết cho d => a tối giản

b) gọi  ƯCLN 2 số là d

2n+3 chia hết cho d

4n+8 chia hết cho d

=> 1/2(4n+8)- 2n-3 chia hết cho d

2n+4-2n-3 chia hết cho d => 1 chia hết cho d

vậy b tối giản

25 tháng 4 2016

Xem câu hỏi

cho you bài này mà tham khảo nè

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

8 tháng 4 2018

gọi số cần tìm là a.ta có:a=4n+3

                                         =17m+9

                                         =19k+13

\(\Rightarrow a+25=4n+3+25=4n+28=4\left(n+7\right)⋮4\)   

                       \(=17m+9+25=17m+34=17\left(m+2\right)⋮17\) 

                         \(=19k+13+25=19k+38=19\left(k+2\right)⋮19\)

\(\Rightarrow a+25⋮17,4,19\)

\(\Rightarrow a+25⋮1292\)

\(\Rightarrow a=1292k-25\)\(=1292\left(k-1\right)+1267\)

do 1267<1292 nên số dư của phép chia là 1267

2,

gọi ƯCLN[2n+1,2n(n+1)] là d

\(\Rightarrow2n+1⋮d,2n\left(n+1\right)⋮d\)

\(\Rightarrow n\left(2n+1\right)⋮d,2n^2+2n⋮d\)

\(\Rightarrow2n^2+n⋮d,2n^2+2n⋮d\)

\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)

\(\Rightarrow n⋮d\)

MÀ \(2n+1⋮d,n⋮d\Rightarrow2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)

suy ra đpcm

8 tháng 4 2018

thank you bạn nhiều nha !!!!!!!!!!!!

29 tháng 4 2019

Đặt \(\left(4n+12,2n+5\right)=d\)

\(\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left[2\left(2n+5\right)\right]⋮d\end{cases}}\)

\(\Leftrightarrow\left[\left(4n+12\right)-2\left(2n+5\right)\right]⋮d\)

\(\Leftrightarrow\left[4n+12-4n-10\right]⋮d\)

\(\Leftrightarrow2⋮d\Leftrightarrow\orbr{\begin{cases}d=2\\d=1\end{cases}}\)

Dễ thấy \(\left(2n+5\right)\) không chia hết cho 2 \(\Rightarrow d=1\)

Vậy \(\left(4n+12,2n+5\right)=1\)​ hay \(\frac{4n+12}{2n+5}\) tối giản với mọi n.

31 tháng 7 2016

Giả sử 7n+3 và 5n+2 có nghiệm nguyên tố là d trong đó d>1.

Khi đó 7n+3 chia hết cho d

=> 5(7n+3) chia het cho d hay 35n+15 chc d           (1)

5n+2 chc d

=>7(5n+2) chc d

hay 35n+14 chc d            (2)

Tu 1 va 2 ta suy ra 35n+15-(35n+14) chc d hay 1 chc d =>d=1(vô lý với giả thiết vậy phân số đã tối giản

31 tháng 7 2016

Gọi d = ƯCLN(7n + 3; 5n + 2) (\(d\in\)N*)

=> 7n + 3 chia hết cho d; 5n + 2 chia hết cho d

=> 5.(7n + 3) chia hết cho d; 7.(5n + 2) chia hết cho d

=> 35n + 15 chia hết cho d; 35n + 14 chia hết cho d

=> (35n + 15) - (35n + 14) chia hết cho d

=> 35n + 15 - 35n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(7n + 3; 5n + 2) = 1

=> phân số \(\frac{7n+3}{5n+2}\)là phân số tối giản (đpcm)