Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(2n+1,4n+3\right)=d\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
ban vao cho cau hoi cua tran thi y do !
cau hoi giong cua ban !tk mk nhe !
Goi UCLN(2n+3;2n+5)=d
Ta có:2n+3 chia hết cho d
2n+5 chia hết cho d
=>(2n+5)-(2n+3) chia hết cho d
=>2 chia hết cho d
=>d\(\in\)U(2)={1,2}
Mà 2n+5:2n+3 không chia hết cho 2
=>d=1
Vậy ...............
Gọi d thuộc ƯC(2n+3,2n+5)
=>2n+3 chia hết cho d ; 2n+5 chia hết cho d
=>(2n+5)-(2n+3) chia hết cho d
=> 2 chia hết cho d
=>d thuộc Ư(2)={1;2}
Mà 2n+3 ko chia hết cho 2
=> d\(\ne\)2
=>d=1
Vậy 2n+3 và 2n+5 nguyên tố cùng nhau với mọi N(đpcm)
a) Gọi d là UCLN ( n ; n+1 )
n+1 chia hết cho d
n chia hết cho d
-> n+1-n chia hết cho d
-> 1chia hết cho d
=>N và n+1 là 2 số nguyên tố cùng nhau
=>ĐPCM
Gọi (2n + 1,6n + 5) = d (d \(\in\)N)
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}
Mà d là lớn nhất nên d = 2
Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2
=> (2n + 1,6n + 5) = 1
Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Ủng hộ mk nha !!! ^_^
Gọi d là Ưcln của 2n + 1 và 6n + 5
Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d
Mà ưc của 2 là 1 => d = 1
VậY (đpcm_)
Lời giải:
Gọi $d$ là ƯCLN của $2n+1$ và $2n+2$
\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ 2n+2\vdots d\end{matrix}\right.\Rightarrow (2n+2)-(2n+1)\vdots d\) hay $1\vdots d$
$\Rightarrow d=1$
Vậy ƯCLN của $2n+1, 2n+2$ là $1$ nên $2n+1, 2n+2$ nguyên tố cùng nhau.