Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (12n + 5;18n + 7) = d
=> \(\hept{\begin{cases}12n+5⋮d\\18n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(12n+5\right)⋮d\\2\left(18n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}36n+15⋮d\\36n+14⋮d\end{cases}}}\)
=> 36n + 15n - (36n + 14) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
Vì \(n\inℤ\Rightarrow\hept{\begin{cases}12n+5\inℤ\\18n+7\inℤ\end{cases}\Rightarrow d\inℤ}\)
Khi đó d \(\in\left\{1;-1\right\}\)
=> 12n + 5 ; 18n + 7 là 2 số nguyên tố cùng nhau
=> \(\frac{12n+5}{18n+7}\)là phân số tối giản
gọi d là ƯCLN của 21n+4 và 14n+3
=> 21n+4 chia hết cho d =>2.(21n+4) chia hết cho d
14n+3 chia hết cho d =>3.(14n+3) chia hết cho d
=> (42n+9)-(42n+8) chia hết cho d
=> 42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư(1)={1}
=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)
đặt \(ƯCLN_{\left(21n+1;18n+1\right)}=d\)
\(\Rightarrow\hept{\begin{cases}21n+1⋮d\\18n+1⋮d\end{cases}}\)
\(\Rightarrow\left(21n+1\right)-\left(18n+1\right)⋮d\)
\(\Leftrightarrow3n⋮d\)\(\Rightarrow21n⋮d\)
mà \(21n+1⋮d\)
\(\Rightarrow21n+1-21n⋮d\)\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=1\)
do đó phân số 21n+1/18n+1 tối giản với mọi số tự nhiên n
goi d la ƯCLN(21N+1;18N+1)
TA CÓ 18N+1 CHIA HẾT CHO d
21N+1 CHIA HẾT CHO d
=> 126N+7 CHIA HẾT CHO d
126N+6 CHIA HẾT CHO d
=>126N+7-126N-6 CHIA HẾT CHO d
=>1 CHIA HẾT CHO d
=>d=1
VẬY ƯCLN CỦA TỬ VÀ MẪU LÀ 1 =>PHÂN SỐ TỐI GIẢN VỚI MỌI N THUỘC N