Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
Gọi d=ƯCLN(3n+10;n+3)
=>3n+10-3n-9 chiahết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d
\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)
Mà n4 + 3n2 + 1 \(⋮\)d
= n4 + 2n2 + n2 + 1
= ( n4 + 2n2 + 1 ) + n2
= ( n2 + 1 ) 2 + n2 \(⋮\)d
\(\Rightarrow\)n2 \(⋮\)d
\(\Leftrightarrow\)1 \(⋮\)d
trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm
cíu
Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+2\right)⋮d\)
\(\Leftrightarrow-1⋮d\)
=>d=1
=>UCLN(2n+1;3n+2)=1
=>2n+1/3n+2 là phân số tối giản