K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Đặt độ dài a = AB, b = BC, c = CD, d = AD

Gọi O là giao điểm 2 đường chéo AC và BD.

* Trong ∆ OAB, ta có:

OA + OB > a (bất đẳng thức tam giác) (1)

* Trong  ∆ OCD, ta có:

OC + OD > c (bất đẳng thức tam giác) (2)

Từ (1) và (2) suy ra:

OA + OB + OC + OD > a + c hay AC + BD > a + c (*)

* Trong ΔOAD, ta có: OA + OD > d (bất đẳng thức tam giác) (3)

* Trong  ∆ OBC, ta có: OB + OC > b (bất đẳng thức tam giác) (4)

Từ (3) và (4) suy ra:

OA + OB + OC + OD > b + d hay AC + BD > b + d (**)

Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong  ∆ ABC, ta có: AC < AB + BC = a + b (bất đẳng thức tam giác)

* Trong  ∆ ADC, ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)

Suy ra: 2AC < a + b + c + d

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong  ∆ ABD, ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)

* Trong  ∆ BCD, ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)

Suy ra: 2BD < a + b + c + d

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Từ (5) và (6) suy ra: AC + BD < a + b + c + d

8 tháng 5 2019

Đặt p = AB + BC + CD + DA

Ta có: OA + OD > AD (1)

OA + OB > AB (2)

OB + OC > BC (3)

OC + OD > CD (4)

Cộng vế theo vế (1), (2), (3), (4) ta có:

2(OA + OB + OC + OD) > AB + BC + CD + DA

2(AC + BD) > p

AC + BD > p/2 (*)

Mặt khác: Trong ΔABC có AC < AB + BC (5)

Trong ΔACD có AC < AD + CD (6)

Cộng vế theo vế (5) và (6) ta có:

2AC < AB + BC + CD + DA

Tương tự ta cũng có BD < p/2. Suy ra: AC + BC < (p/2) + (p/2)

Hay AC + BD < p (**)

Từ (*) và (**) ta có: (p/2) < AC + BD < p.

12 tháng 7 2016

A B C D O

  • Theo bất đẳng thức tam giác , ta có : \(AO+OB>AB\)

\(OB+OC>BC\)

\(OC+OD>CD\)

\(OD+OA>AD\)

\(\Rightarrow2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\Leftrightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\)

  • Tương tự, ta có : \(AC< AB+BC\) ; \(AC< AD+CD\)

\(BD< AB+AD\) ; \(BD< BC+CD\)

\(\Rightarrow2\left(AC+BD\right)< 2\left(AB+BC+CD+AD\right)\Leftrightarrow AC+BD< AB+BC+CD+AD\)

Vậy ta có : \(\frac{AB+BC+CD+AD}{2}< AC+BD< AB+BC+CD+AD\)

Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
 giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm) 

24 tháng 8 2017

*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 

* giao của AC và BD là O. 

trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 

trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 

cổng 4 bất đẳng thức cùng chiề này lại ta có: 

2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 

<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)

10 tháng 7 2016

A B C D O

Giả sử tứ giác đó là ABCD , hai đường chéo AC và BD cắt nhau tại O

  • Theo bất đẳng thức tam giác, ta có : \(AO+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OD+OA>AD\)

\(\Rightarrow OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA\)

\(\Leftrightarrow2\left(AC+BD\right)>AB+BC+CD+AD\Leftrightarrow AC+BD>\frac{AB+BC+CD+AD}{2}\)

  • Theo bất đẳng thức tam giác : \(AB+BC>AC\) ; \(AD+DC>AC\)\(AB+AD>BD\) ; 

\(BC+CD>BD\)

\(\Rightarrow AB+BC+AD+DC+AB+AD+BC+CD>AC+AC+BD+BD\)

\(\Leftrightarrow2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\Leftrightarrow AB+BC+CD+DA>AC+BD\)

29 tháng 6 2017

Tứ giác.

Tứ giác.

Gọi O là giao của AC và BD

AB>AO+BO

AD>AO+DO

BC>BO+CO

DC>DO+CO

=>AB+AD+BC+CD>2(AC+BD)

=>(AC+BD)<P/2

AC<AB+BC

AC<AD+DC

BD<BC+CD

BD<AB+AD

=>2(AC+BD)<2*C ABCD

=>AC+BD<C ABCD

27 tháng 7 2020

Gọi O là giao điểm của AC và BD.Ta có :

OA + OB > AB , OB + OC > AC ; OC + CD > CD , OD + OA > AD.Cộng từng vế các bất đẳng thức trên rồi chia cho 2 ,ta được \(AC+BD>\frac{AB+BC+CD+AD}{2}\)

Vậy tổng hai đường chéo lớn hơn nửa chu vi

Kết hợp : AC + BD < AB + BC + CD + DA

Vậy \(\frac{AB+BC+CD+AD}{2}< AC+BD< AB+BC< CD+DA\)

27 tháng 7 2020

Đặt độ dài AB = a, BC = b, CD = c, AD = d

Gọi O là giao điểm hai đường chéo AC và BD

Trong ∆OAB, ta có:

OA + OA > a (bất đẳng thức tam giác)          (1)

Trong ∆OCD ta có:

Từ (1) và (2) suy ra:

OA + OB + OC + OD > a + c