Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n;n+1;n+2;n+3;n+4 là 5 số tự nhiên liên tiếp
\(.\)Nếu n \(⋮\)5 \(\Rightarrow\)đpcm
\(.\)Nếu n không chia hết cho 5 => n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4
- Với n = 5k + 1 => n + 4 = 5k + 5 \(⋮\)5
- Với n = 5k + 2 => n + 3 = 5k + 5 \(⋮\)5
- Với n = 5k + 3 => n + 2 = 5k + 5 \(⋮\)5
- Với n = 5k + 4 => n + 1 = 5k + 5 \(⋮\)5
Vậy trong 5 số tự nhiên liên tiếp có một số luôn chia hết cho 5
Gọi 5 số tự nhiên liên tiếp là a, a + 1, a+2, a+3,a+4
Ta có:
a+a+1+a+2+a+3+a+4
= ( a+a+a+a+a) + ( 1 + 2 + 3 + 4 )
= 5.a+10
= 5. ( a + 2 ) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
ta có 5 số tự nhiên liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 . suy ra: (đpcm )
* nếu n chia hết cho 5 dư 1 =>n+4 chia hết cho 5 => đpcm
* nếu n chia hết cho 5 dư 2 =>n+3 chia hết cho 5 => đpcm
* nếu n chia hết cho 5 dư 3 =>n+2 ...................... => đpcm
* nếu n chia hết cho 5 dư 4 =>n+1....................... => đpcm
k cho mình nhế
Bài làm
Gọi 5 số liên tiếp bất kì là: n; n + 1; n + 2 ; n + 3; n + 4.
Nếu n : 5 dư 1 => n + 4 chia hết cho 5.
n : 5 dư 2 => n + 3 chia hết cho 5.
n : 5 dư 3 => n + 2 chia hết cho 5.
n : 5 dư 4 => n + 1 chia hết cho 5.
n : 5 mà không dư => n chia hết cho 5
=> 5 số tự nhiên liên tiếp n; n + 1; n + 2; n + 3; n + 4 chia hết cho 5
Vậy 5 số tự nhiên liên tiếp bất kì luôn có một số chia hết cho 5. ( đpcm )
~ Chắc zậy ~
# Chúc bạn học tốt #
vì cứ 5 đơn vị lại có 1 số chia hết cho 5 nên 5 số liên tiếp sẽ có 1 số chia hết cho 5
a. Ta có:
45 + 99 + 180 = 324
Vì: Số tận cùng của nó là số 4
=> 324 chia hết cho 2
Bài 1
chỉ cần tính ra kết quả là đc
Bài 2
Giả sử một số tự nhiên bất kì = n
=> 2 số tự nhiên liên tiếp là n và n+1
- Với n = 2k+1=>n+1 = 2k+2 chia hết 2
- Với n = 2k => n chia hết 2
Vậy trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
Ví dụ
1 2 3 4 5 là 5 số liên tiếp có 1 số chia hết cho 5 đó là số 5
Tương tự
K nha
Bài giải
Ta có 5 số tn liên tiếp là n ; n + 1 ; n + 2 ; n + 3 ; n + 4 nếu n chia hết cho 5 => điều phải chứng minh
Nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh
Nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh
Nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh
Nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minh
Chúc bạn học tốt !