K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

Ta biết một số chính phương hoặc chia hết cho 3 hoặc chia 3 dư 1 
(3k)² = 9k² chia hết cho 3 
(3k+1)² = 9k² + 6k + 1 chia 3 dư 1 
(3k+2)² = 9k² + 12k + 3 + 1 chia 3 dư 1 
----------- 
A = a^2k + (a+1)^2m + (a+2)^2n = (a²)^k + ((a+1)²)^m + ((a+2)²)^n 

a, a+1, a+2 là 3 số nguyên liên tiếp nên có đúng 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 

=> a², (a+1)², (a+2)² có một số chia hết cho 3, 2 số chia 3 dư 1 

=> (a²)^k, ((a+1)²)^m và ((a+2)²)^n có 1 số chia hết cho 3, 2 số chia 3 dư 1 

=> A = (a²)^k + ((a+1)²)^m + ((a+2)²)^n chia 3 dư 2 không thể là số chính phương b² 
(vì b² chia 3 dư 0 hoặc 1) 

10 tháng 1 2016

 Ta biết một số chính phương hoặc chia hết cho 3 hoặc chia 3 dư 1 
(3k)² = 9k² chia hết cho 3 
(3k+1)² = 9k² + 6k + 1 chia 3 dư 1 
(3k+2)² = 9k² + 12k + 3 + 1 chia 3 dư 1 
----------- 
A = a2k + (a+1)2m + (a+2)2n = (a²)k + ((a+1)²)m + ((a+2)²)n

a, a+1, a+2 là 3 số nguyên liên tiếp nên có đúng 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 

=> a², (a+1)², (a+2)² có một số chia hết cho 3, 2 số chia 3 dư 1 

=> (a²)k, ((a+1)²)m và ((a+2)²)n có 1 số chia hết cho 3, 2 số chia 3 dư 1 

=> A = (a²)k + ((a+1)²)m + ((a+2)²)n chia 3 dư 2 không thể là số chính phương b² 
(vì b² chia 3 dư 0 hoặc 1)

27 tháng 7 2016

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 

Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0

27 tháng 7 2016

(2k+1) 2k (2k-1) 
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương

Mình ko chắc đã đúng đâu

26 tháng 7 2016

mau lên các bạn!

28 tháng 11 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

11 tháng 6 2015

Gọi số chính phương đó là m

=> m = p2 (p \(\in\) N)

Ta gọi p = ax.by.cz... (a;b; c là  các thừa số nguyên tố )

=> m = (ax.by.cz... )2 = a2x.by2y.c2z... 

=> đpcm

3 tháng 2 2020

Đặt \(p-4=a^4\)với \(a\inℕ\). Dễ thấy \(p>5\)thì a>1

\(\Rightarrow p=a^4+4=\left(a^2\right)^2+2a^2+2a^2+4-4a^2\)

\(=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2-2a\right)\left(a^2+2+2a\right)\)

Với \(a>1\)thì \(a^2+2-2a>1\)và \(a^2+2+2a>1\)nên

\(\left(a^2+2-2a\right)\left(a^2+2+2a\right)\)là hợp số hay p là hớp số ( vô lí vì \(p\in P\))
Do đó p là snt lớn hơn 5 thì p-4 không thể là lũy thừa bậc 4 của 1 số tự nhiên 

Chúc bạn học tốt !!!

11 tháng 1 2016

Bình nói đúng vì lũy thừa bậc chẵn của số nguyên âm là số nguyên dương

An nói đúng vì lũy thừa bậc chẵn của số nguyên âm là số nguyên dương

Nhớ tick đúng cho mình nha